Skip to main content
Log in

Fabrication and enhancement in photoconductive response of \(\alpha\)-Fe2O3/graphene nanocomposites as anode material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report a facile fabrication for the synthesis of graphene based α-Fe2O3 nanocomposites as anode material for photoelectrochemical water splitting. The effect of introduction of graphene as a solid-state electron material has been investigated in detail by controlling the synthesis parameters. The XRD pattern of hematite α-Fe2O3 nanoparticles were indexed to rhombohedral structure of α-Fe2O3, while the TEM images illustrate the flaky structure of graphene supported by hematite nanoparticles. The rGO/\(\alpha\)-Fe2O3 nanocomposites showed enhanced photocurrent of ~ 4 mA cm−2 at (1.23 V vs. RHE) under standard illumination conditions (AM 1.5 G 100 mW cm−2). The enhanced photoelectrochemical performance may be attributed to synergistic effect of graphene and \(\alpha\)-Fe2O3 by improving the charge transport properties. The optical properties were also observed to be influenced by the coupling of rGO and α-Fe2O3 composites as witnessed in the DRS spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.X. Kronawitter, I. Zegkinoglou, S.-H. Shen, P. Liao, I.S. Cho, O. Zandi, Y.-S. Liu, K. Lashgari, G. Westin, J.-H. Guo, F.J. Himpsel, E.A. Carter, X.L. Zheng, T.W. Hamann, B.E. Koel, S.S. Mao, L. Vayssieres, Titanium incorporation into hematite photoelectrodes: theoretical considerations and experimental observations. Energy Environ. Sci. 7, 3100–3121 (2014)

    Article  CAS  Google Scholar 

  2. J. Qingyi Zeng, J. Bai, L. Li, K. Xia, X. Huang, Li, B. Zhou, A novel in situ preparation method for nanostructured α-Fe2O3 films from electrodeposited Fe films for efficient photoelectrocatalytic water splitting and the degradation of organic pollutants. J. Mater. Chem. A 3, 4345–4353 (2015)

    Article  Google Scholar 

  3. S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. RSC Adv. 4, 27998–28004 (2014)

    Article  CAS  Google Scholar 

  4. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)

    Article  CAS  Google Scholar 

  5. M. Avudaithai, T. Kutty, Ultrafine powders of SrTiO3, from the hydrothermal preparation and their catalytic activity in the photolysis of water. Mater. Res. Bull. 22(5), 641–650 (1987)

    Article  CAS  Google Scholar 

  6. A. Kumar, P.G. Santangelo, N.S. Lewis, Electrolysis of water at strontium titanate (SrTiO3) photoelectrodes: distinguishing between the statistical and stochastic formalisms for electron-transfer processes in fuel-forming photoelectrochemical systems. J. Phys. Chem. 96(2), 834–842 (1992)

    Article  CAS  Google Scholar 

  7. T. Ohno, T. Tsubota, Y. Nakamura, K. Sayama, Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Appl. Catal. A 288(1), 74–79 (2005)

    Article  CAS  Google Scholar 

  8. B. Levy, W. Liu, S.E. Gilbert, Directed photocurrents in nanostructured TiO2/SnO2 heterojunction diodes. J. Phys. Chem. B 101(10), 1810–1816 (1997)

    Article  CAS  Google Scholar 

  9. W. Han, C. Zang, Z. Huang, H. Zhang, L. Ren, X. Qia, J. Zhong, Enhanced photocatalytic activities of three-dimensional graphene-based aerogel embedding TiO2 nanoparticles and loading MoS2 nanosheets as co-catalyst. Int. J. Hydrog. Energy 39(34), 19502–19512 (2014)

    Article  CAS  Google Scholar 

  10. K. Sivula, F. Le Formal, M. Grätzel, Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 4(4), 432–449 (2011)

    Article  CAS  Google Scholar 

  11. R. Ling Cao, D. Wang, L. Wang, X. Xu, Li, Enhanced visible light photocatalytic activity for the hybrid MoS2/anatase TiO2(001) nanocomposite: a first-principles study. Chem. Phys. Lett. 612, 285–288 (2014)

    Article  Google Scholar 

  12. P.S. Lau, K.M. Ng, Carbon dioxide reforming of methane by solid state synthesis supported catalysts. Int. J. Hydrog. Energy 39(34), 19513–19518 (2014)

    Article  CAS  Google Scholar 

  13. S.H. Hsieh, W.J. Chen, C.T. Wu, Pt-TiO2/graphene photocatalysts for degradation of AO7 dye under visible light. Appl. Surf. Sci. 340, 9–17 (2015)

    Article  CAS  Google Scholar 

  14. W. Han, L. Rena, Z. Zhanga, X. Qia, Y. Liua, Z. Huanga, J. Zhonga, Graphene-supported flocculent-like TiO2 nanostructures for enhanced photoelectrochemical activity and photo degradation performance. Ceram. Int. 41(6), 7471–7477 (2015)

    Article  CAS  Google Scholar 

  15. W. Han, L. Ren, X. Qi, Y. Liu, X. Wei, Z. Huang, J. Zhong, Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation. Appl. Surf. Sci. 299, 12–18 (2014)

    Article  CAS  Google Scholar 

  16. S. Kefayat Ullah, S.-B. Ye, L. Jo, K.-Y. Zhu, W.-C. Cho, Oh, Optical and photocatalytic properties of novel heterogeneous PtSe2–graphene/TiO2 nanocomposites synthesized via ultrasonic assisted techniques, Ultrason. Sonochem. 21(5), 1849–1857 (2014)

    Article  Google Scholar 

  17. M.H. Pournaghi Azar, B. Habibi, Electro polymerization of aniline in acid media on the bare and chemically pre-treated aluminum electrodes: a comparative characterization of the polyaniline deposited electrodes. Electrochem. Acta 52, 4222–4230 (2007)

    Article  CAS  Google Scholar 

  18. P. Bollella, G. Fusco, D. Stevar, A glucose/oxygen, enzymatic fuel cell based on gold nanoparticles modified graphene screen-printed electrode. Proof-of-concept in human saliva. Sens. Actuators B 265, 921–930 (2018)

    Article  Google Scholar 

  19. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Maaz, Synthesis and analytical applications of photoluminescent carbon nanosheet by exfoliation of graphite oxide without purification. J. Mater. Sci.: Mater. Electron. 27(12), 13080–13085 (2016)

    CAS  Google Scholar 

  20. W.C. Chen, T.C. Wen, A. Gopalan, Negative capacitance for polyaniline: an analysis via electrochemical impedance spectroscopy. Synth. Met. 128, 179–189 (2002)

    Article  CAS  Google Scholar 

  21. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 10, 751 (2010)

    Article  CAS  Google Scholar 

  22. X. Fuku, N. Matinise, M. Masikini, K. Kasinathan, M. Maaz, An electrochemically active green synthesized polycrystalline NiO/MgO catalyst: use in photo-catalytic applications. Mater. Res. Bull. 97, 457–465 (2018)

    Article  CAS  Google Scholar 

  23. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, M. Maaz, Rice husks as a sustainable source of high quality nanostructured silica for high performance Li-ion battery requital by sol-gel method–a review, Adv. Mater. Lett. 7(9), 684–696 (2016)

    Article  CAS  Google Scholar 

  24. T. Huang, J. Long, M. Zhong, J. Jiang, X. Ye, Z. Lin, L. Li, The effects of low power density CO2 laser irradiation on graphene. Appl. Surf. Sci. 273, 502 (2013)

    Article  CAS  Google Scholar 

  25. Y. Wang, Z.H. Ni, T. Yu, Z.X. Shen, H.M. Wang, Y.H. Wu, W. Chen, A.T.S. Wee, Raman studies of monolayer graphene: the substrate effect. J. Phys. Chem. C 112, 10637 (2008)

    Article  CAS  Google Scholar 

  26. K. Ullah, Z. Lei, S. Ye, A. Ali, W.-C. Oh, Microwave synthesis of a CoSe2/graphene–TiO2 heterostructure for improved hydrogen evolution from aqueous solutions in the presence of sacrificial agents. RSC Adv. 5, 18841 (2015)

    Article  CAS  Google Scholar 

  27. G. Williams, B. Seger, P.V. Kamat, TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2(7), 1487–1491 (2008)

    Article  CAS  Google Scholar 

  28. J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low band gap TiO2 nanoparticles wrapped by graphene. Adv. Mater. 24, 1084–1088 (2012)

    Article  CAS  Google Scholar 

  29. H. Choi, Y.-S. Chen, K.G. Stamplecoskie, P.V. Kamat, Boosting the photovoltage of dye-sensitized solar cells with, thiolated gold nanoclusters. J. Phys. Chem. Lett. 6(1), 217–223 (2015)

    Article  CAS  Google Scholar 

  30. L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520 (2009)

    Article  CAS  Google Scholar 

  31. K. Ullah, S. Ye, Z. Lei, K.-Y. Cho, W.-C. Oh, Synergistic effect of PtSe2 and graphene sheets supported by TiO2 as cocatalysts synthesized via microwave techniques for improved photocatalytic activity. Catal. Sci. Technol. 5, 184–198 (2015)

    Article  CAS  Google Scholar 

  32. K. Kaviyarasu, A. Ayeshamariam, E. Manikandan, J. Kennedy, R. Ladchumananandasivam, U.U. Gomes, M. Jayachandran, M. Maaza, Solution processing of CuSe quantum dots: photocatalytic activity under RhB for UV and visible-light solar irradiation. Mater. Sci. Eng. B 210, 1–9 (2016)

    Article  CAS  Google Scholar 

  33. G. Rahman, O.-S. Joo, Facile preparation of nanostructured α-Fe2O3 thin films with enhanced photoelectrochemical water splitting activity, J. Mater. Chem. A 1, 5554–5561 (2013)

    Article  CAS  Google Scholar 

  34. K. Kombaiah, J.Judith Vijaya, L. John Kennedy, M. Bououdina, K. Kaviyarasu, R. Jothi Ramalingam, M.A. Munusamy, A. AlArfaj, Effect of Cd2+ concentration on ZnFe2O4 nanoparticles on the structural, optical and magnetic properties. Optik 135, 190–199 (2017)

    Article  CAS  Google Scholar 

  35. L. Wang, Y. Park, P. Cui, S. Bak, H. Lee, S.M. Lee, H. Lee, Facile preparation of an n-type reduced graphene oxide field effect transistor at room temperature. Chem. Commun. 50, 1224–1226 (2014)

    Article  CAS  Google Scholar 

  36. Y.Y. Liang, D.Q. Wu, X.L. Feng, K. Mullen, Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv. Mater. 21, 1679 (2009)

    Article  CAS  Google Scholar 

  37. K. Yang, H.B. Peng, Y.H. Wen, N. Li, Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl. Surf. Sci. 256, 3093–3097 (2010)

    Article  CAS  Google Scholar 

  38. K. Ullah, L. Zhu, Z.D. Meng, S. Ye, S. Sarkar, W.C. Oh, Synthesis and characterization of novel PtSe2/graphene nanocomposites and its visible light driven catalytic properties. J. Mater. Sci. 49, 4139–4147 (2014)

    Article  CAS  Google Scholar 

  39. R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A. Rao, I.M. Shigami, Effects of layer stacking on the combination raman modes in graphene. ACS Nano 5(3), 1594–1599 (2011)

    Article  CAS  Google Scholar 

  40. D. Kong, H. Wang, Z. Lu, Y. Cui, CoSe2 Nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 136(13), 4897–4900 (2014)

    Article  CAS  Google Scholar 

  41. R. Tauc, Grigorovici, A. Vancu, Optical properties and electronic structure of aamorphous germanium. Phys. Status Solidi (b) 15(2), 627–637 (1966)

    Article  CAS  Google Scholar 

  42. J. Low, J. Yu, Q. Li, B. Cheng, Enhanced visible light photocatalytic activity of plasmonic Ag and graphene Co-modified Bi2WO6 nanosheets. Phys. Chem. Chem. Phys. 16, 1111–1120 (2014)

    Article  CAS  Google Scholar 

  43. P.V. Kamat, Graphene-based nano architectures: anchoring semiconductor and metal nanoparticles on a two dimensional carbon support. J. Phys. Chem. Lett. 1, 520–527 (2010)

    Article  CAS  Google Scholar 

  44. P. Hu, Y.D. Posner, Y.B. David, D. Milstein, Reusable homogeneous catalytic system for hydrogen production from methanol and water. ACS Catal. 4(8), 2649–2652 (2014)

    Article  CAS  Google Scholar 

  45. C. Zhang, Q. Wu, X. Ke, J. Wang, X. Jin, S. Xue, Ultrathin hematite films deposited layer-by-layer on a TiO2 underlayer for efficient water splitting under visible light. Int. J. Hydrog. Energy 39(27), 14604–14612 (2014)

    Article  CAS  Google Scholar 

  46. Y. Zhao, Y. Li, R. Ma, M.J. Roe, D.G. McCartney, Y. Zhu, Growth and characterization of iron oxide nanorods/nanobelts prepared by a simple iron-water reaction. Small 2, 422–427 (2006)

    Article  CAS  Google Scholar 

  47. C. Chunlan Cao, H.W. Shen, S. Wang, S. Song, M. Wang, Improving photoelectrochemical performance by building Fe2O3 heterostructure on TiO2 nanorod arrays. Mater. Res. Bull. 70, 155–162 (2015)

    Article  Google Scholar 

  48. S.D. Tilley, M. Cornuz, K. Sivula, M. Grätzel, Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405–6408 (2010)

    Article  CAS  Google Scholar 

  49. C.Y. Cummings, F. Marken, L.M. Peter, K.G.U. Wijayantha, A.A. Tahir, New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies. J. Am. Chem. Soc. 134(2), 1228–1234 (2012)

    Article  CAS  Google Scholar 

  50. D.K. Zhong, M. Cornuz, K. Sivula, M. Graetzel, D.R. Gamelin, Photo-assisted electrodeposition of cobalt–phosphate (Co–Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4, 1759–1764 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kefayat Ullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, N., Ullah, A., Khan, Y. et al. Fabrication and enhancement in photoconductive response of \(\alpha\)-Fe2O3/graphene nanocomposites as anode material. J Mater Sci: Mater Electron 29, 17786–17794 (2018). https://doi.org/10.1007/s10854-018-9886-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9886-2

Navigation