Skip to main content
Log in

Impact of interfacial layer using ultra-thin SiO2 on electrical and structural characteristics of Gd2O3 MOS capacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of present study is to improve the quality of Gd2O3/p-Si MOS structure by reducing interface trap charge density. Therefore, the ultra-thin SiO2 layer was grown to high-k/Si interface. The effect of the post deposition annealing on the structural properties of the Gd2O3/SiO2 films and electrical characteristics of the Al/Gd2O3/SiO2/p-Si/Al were investigated for three different temperature. Besides, the effect of the series resistance and measurement frequency on the electrical characteristics of the p-MOS capacitors was examined in detail. 118 nm-thick Gd2O3 films were grown by RF magnetron sputtering following the 5 nm-thick SiO2 deposition on p type Si wafer by dry oxidation method. While the Gd2O3 monoclinic characteristic peaks were observed in the Gd2O3/SiO2/Si structures annealed at 600 °C and 800 °C, the XRD spectra of as-deposited and annealed at 400 °C sample pointed out Gd silicate formation. –Si, –O, –Gd, and –H bonds were defined in the FTIR spectra of all samples. The frequency dependent capacitance–voltage (C–V) and conductance–voltage (G/ω–V) characteristics of Gd2O3/SiO2 MOS capacitor were measured. Strong accumulation capacitance values in these devices did not change significantly depending on frequency. Unlike from the MOS capacitor with as-deposited and annealed Gd2O3/SiO2 at 400 °C, the interface trap charge density \(({N_{it}})\) increased with increasing voltage frequency for the samples annealed at 600 °C and 800 °C. No significant change in the border trap density \(({N_{bt}})\) with increasing frequency was observed in the MOS capacitor except for as-deposited device. The barrier height \(({\Phi _B})\) increased with increasing frequency for all Gd2O3/SiO2 MOS capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Jeon, B.H. Lee, K. Zawadzki, W.-J. Qi, A. Lucas, R. Nieh, J.C. Lee, in International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217) (IEEE, n.d.), pp. 797–800

  2. J. Robertson, R.M. Wallace, Mater. Sci. Eng. R 88, 1 (2015)

    Article  Google Scholar 

  3. L. Kang, B.H. Lee, W.-J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, J.C. Lee, IEEE Electron. Device Lett. 21, 181 (2000)

    Article  CAS  Google Scholar 

  4. A. Kahraman, E. Yilmaz, S. Kaya, A. Aktag, J. Mater. Sci. Mater. Electron. 26, 8277–8284 (2015)

    Google Scholar 

  5. Y.C. Quan, J.E. Lee, H. Kang, Y. Roh, D. Jung, C.-W. Yang, Jpn. J. Appl. Phys. 41, 6904 (2002)

    Article  CAS  Google Scholar 

  6. T. Tan, Z. Liu, H. Lu, W. Liu, F. Yan, W. Zhang, Appl. Phys. A 97, 475 (2009)

    Article  CAS  Google Scholar 

  7. N. Novkovski, A. Paskaleva, A. Skeparovski, D. Spassov, Adv. Condens. Matter Phys. 2018, 1 (2018)

    Article  Google Scholar 

  8. N. Manikanthababu, S. Vajandar, N. Arun, A.P. Pathak, K. Asokan, T. Osipowicz, T. Basu, S.V.S. Nageswara Rao, Appl. Phys. Lett. 112, 131601 (2018)

    Article  Google Scholar 

  9. Y. Wang, H. Wang, C. Ye, J. Zhang, H. Wang, Y. Jiang, ACS Appl. Mater. Interfaces 3, 3813 (2011)

    Article  CAS  Google Scholar 

  10. V. Mikhelashvili, G. Eisenstein, F. Edelmann, J. Appl. Phys. 90, 5447 (2001)

    Article  CAS  Google Scholar 

  11. C. Henkel, S. Abermann, O. Bethge, G. Pozzovivo, P. Klang, M. Stöger-Pollach, E. Bertagnolli, Microelectron. Eng. 88, 262 (2011)

    Article  CAS  Google Scholar 

  12. Y. Zhao, Materials (Basel) 5, 1413 (2012)

    Article  CAS  Google Scholar 

  13. F.-H. Chen, J.-L. Her, Y.-H. Shao, Y.H. Matsuda, T.-M. Pan, Nanoscale Res. Lett. 8, 18 (2013)

    Article  Google Scholar 

  14. R. Khosla, P. Kumar, S.K. Sharma, IEEE Trans. Device Mater. Reliab. 15, 610 (2015)

    Article  CAS  Google Scholar 

  15. E.K. Evangelou, G. Mavrou, A. Dimoulas, N. Konofaos, Solid State Electron. 51, 164 (2007)

    Article  CAS  Google Scholar 

  16. B. Rudraswamy, N. Dhananjaya, I.O.P. Conf, Ser. Mater. Sci. Eng. 40, 012034 (2012)

    Google Scholar 

  17. R.K. Tamrakar, D.P. Bisen, N. Brahme, J. Radiat. Res. Appl. Sci. 7, 550 (2014)

    Article  Google Scholar 

  18. C.-H. Kao, H. Chen, Y.T. Pan, J.S. Chiu, S.P. Lin, C.S. Lai, J. Electrochem. Soc. 157, H915 (2010)

    Article  CAS  Google Scholar 

  19. M.A. Pampillón, P.C. Feijoo, E. San Andrés, M.L. Lucía, A. del Prado, M. Toledano-Luque, Microelectron. Eng. 88, 2991 (2011)

    Article  Google Scholar 

  20. A. Kahraman, J. Mater. Sci. Mater. Electron. 29, 7993 (2018)

    Article  CAS  Google Scholar 

  21. N. Ikarashi, K. Watanabe, K. Masuzaki, T. Nakagawa, M. Miyamura, J. Appl. Phys. 100, 063507 (2006)

    Article  Google Scholar 

  22. T.F. Young, C.P. Chen, J.F. Liou, Y.L. Yang, T.C. Chang, J. Porous Mater. 7, 339 (2000)

    Article  CAS  Google Scholar 

  23. P.C. Feijoo, M. Pampillón, E.S. Andrés, J. Vac. Sci. Technol. B 31, 01A103 (2013)

    Article  Google Scholar 

  24. H.K. Cho, H.-J. Cho, S. Lone, D.-D. Kim, J.H. Yeum, I.W. Cheong, J. Mater. Chem. 21, 15486 (2011)

    Article  CAS  Google Scholar 

  25. R.K. Tamrakar, D.P. Bisen, K. Upadhyay, I.P. Sahu, N. Brahme, J. Opt. 44, 337 (2015)

    Article  Google Scholar 

  26. R. Ahlawat, Int. J. Appl. Ceram. Technol. 12, 1131 (2015)

    Article  CAS  Google Scholar 

  27. R. National Institute for Optoelectronics (Bucharest, Journal of Optoelectronics and Advanced Materials. (INOE, n.d.)

  28. R. Ahlawat, J. Alloys Compd. 638, 356 (2015)

    Article  CAS  Google Scholar 

  29. H.J. Seul, H.-G. Kim, M.-Y. Park, J.K. Jeong, J. Mater. Chem. C 4, 10486 (2016)

    Article  CAS  Google Scholar 

  30. A. Remolina, B.M. Monroy, M.F. García-Sánchez, A. Ponce, M. Bizarro, J.C. Alonso, A. Ortiz, G. Santana, Nanotechnology 20, 245604 (2009)

    Article  CAS  Google Scholar 

  31. D. Xu, Y. Zhang, D. Zhang, S. Yang, CrystEngComm 17, 1106 (2015)

    Article  CAS  Google Scholar 

  32. I. Leontis, A. Othonos, A.G. Nassiopoulou, Nanoscale Res. Lett. 8, 383 (2013)

    Article  Google Scholar 

  33. S. Jeon, H. Hwang, J. Appl. Phys. 93, 6393 (2003)

    Article  CAS  Google Scholar 

  34. G. Liu, G. Hong, D. Sun, J. Colloid Interface Sci. 278, 133 (2004)

    Article  CAS  Google Scholar 

  35. O.H. teresa, C.K. Choi, J. Korean Phys. Soc. 56, 1150 (2010)

    Article  Google Scholar 

  36. R. Lupták, K. Fröhlich, A. Rosová, K. Hušeková, M. Ťapajna, D. Machajdík, M. Jergel, J.P. Espinós, C. Mansilla, Microelectron. Eng. 80, 154 (2005)

    Article  Google Scholar 

  37. M. Pattabi, G. Arun Kumar Thilipan, AIP Conf. Proc. (2017). https://doi.org/10.1063/1.4980480

  38. A. Tataroğlu, Ş Altındal, Microelectron. Eng. 85, 2256 (2008)

    Article  Google Scholar 

  39. H. Xiao, S. Huang, Mater. Sci. Semicond. Process. 13, 395 (2010)

    Article  CAS  Google Scholar 

  40. H.M. Baran, A. Tataroğlu, Chin. Phys. B 22, 047303 (2013)

    Article  Google Scholar 

  41. A. Tataroğlu, Ş Altındal, Microelectron. Eng. 85, 542 (2008)

    Article  Google Scholar 

  42. Y. Zeng, Tailored Al2O3/4H-SiC interface using ion implantation. Master of Science Thesis, TRITA-ICT-EX-2011:280. Kungliga Tekniska Högskolan KTH, School of Information and Communication Technology, Department of Integrated Circuits and Devices, Stockholm (2011)

  43. W.A. Hill, C.C. Coleman, Solid State Electron. 23, 987 (1980)

    Article  CAS  Google Scholar 

  44. Y. Kim, K.H. Park, T.H. Chung, H.J. Bark, J.-Y. Yi, W.C. Choi, E.K. Kim, J.W. Lee, J.Y. Lee, Appl. Phys. Lett. 78, 934 (2001)

    Article  CAS  Google Scholar 

  45. G. Brammertz, H.C. Lin, K. Martens, D. Mercier, C. Merckling, J. Penaud, C. Adelmann, S. Sioncke, W.-E. Wang, M. Caymax, M. Meuris, M.M. Heyns, ECS Trans. 16, 507–519 (2008)

    Article  CAS  Google Scholar 

  46. E.H. Poindexter, Semicond. Sci. Technol. 4, 961 (1989)

    Article  CAS  Google Scholar 

  47. R. Sorge, Solid State Electron. 42, 761 (1998)

    Article  CAS  Google Scholar 

  48. C. Ye, Y. Wang, J. Zhang, J. Zhang, H. Wang, Y. Jiang, Cit. Appl. Phys. Lett. 99, 5243 (2011)

    Google Scholar 

  49. A. Kahraman, E. Yilmaz, Radiat. Phys. Chem. 139, 114–119 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Development of Turkey under Contract Number: 2016K121110 and Abant Izzet Baysal University under Contract Number AIBU, BAP.2014.03.02.765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysegul Kahraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahraman, A., Gurer, U., Lok, R. et al. Impact of interfacial layer using ultra-thin SiO2 on electrical and structural characteristics of Gd2O3 MOS capacitor. J Mater Sci: Mater Electron 29, 17473–17482 (2018). https://doi.org/10.1007/s10854-018-9847-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9847-9

Navigation