Skip to main content
Log in

Crystal structure, sintering behavior and microwave dielectric properties of CaxY3−xAl5−xTixO12 (0 ≤ x ≤ 2.0) solid solution ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel CaxY3−xAl5−xTixO12 (0 ≤ x ≤ 2.0) solid solution with garnet structure was synthesized by solid-state reaction technique. Ca2+ and Ti4+ substituted for Y3+ and Al3+, respectively. Ca2+/Ti4+ doping reduced the sintering temperature of CaxY3−xAl5−xTixO12 ceramics to 1450 °C, and it also improved corresponding densification process. Meanwhile, the doping strongly influenced microwave dielectric properties. For the samples sintered at 1550 °C for 3 h, the dielectric constant (εr) increased from 7.2 to 34.7 by increasing Ca2+/Ti4+ content, and at the same time the quality factor (Q × f) values increased from 12,000 to 45,200 GHz and then slightly declined to 41,000 GHz. The temperature coefficient of resonant frequency (τf) values of these samples increased monotonically from − 40 to + 31 ppm/°C by increasing Ca2+/Ti4+ content. Therefore, CaxY3−xAl5−xTixO12 solid solution ceramics with x = 1.5 sintered at 1550 °C for 3 h showed optimum microwave dielectric properties: εr = 32.6, Q × f = 45,200 GHz and τf = + 7 ppm/°C. CaxY3−xAl5−xTixO12 (0 ≤ x ≤ 2.0) solid solution ceramics with garnet structure were new promising aluminate ceramics for microwave dielectric application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Wang, Y.R. Wang, J.X. Bi et al., J. Alloys Compd. 721, 143–148 (2017)

    Article  CAS  Google Scholar 

  2. B. Tang, S. Yu, H. Chen et al., J. Alloys Compd. 551, 463–467 (2013)

    Article  CAS  Google Scholar 

  3. S. Takahashi, H. Ogawa, A. Kan, J. Eur. Ceram. Soc. 38, 593–598 (2018)

    Article  CAS  Google Scholar 

  4. B. Tang, S. Yu, H. Chen et al., J. Mater. Sci. Mater. Electron. 24, 1475–1479 (2013)

    Article  CAS  Google Scholar 

  5. S. Yu, S. Zhang, B. Tang et al., Ceram. Int. 38, 613–618 (2012)

    Article  CAS  Google Scholar 

  6. K.P. Surendran, N. Santha, P. Mohanan, Eur. Phys. J. B 41, 301–306 (2004)

    Article  CAS  Google Scholar 

  7. C.W. Zheng, S.Y. Wu, X.M. Chen et al., J. Am. Ceram. Soc. 90, 1483–1486 (2007)

    Article  CAS  Google Scholar 

  8. J.M. Wu, W.Z. Lu, W. Lei et al., Mater. Res. Bull. 46, 1485–1489 (2011)

    Article  CAS  Google Scholar 

  9. M.H. Kim, C.S. Woo, S. Nahm et al., Mater. Res. Bull. 37, 605–615 (2002)

    Article  CAS  Google Scholar 

  10. C. Huang, X. Lu, M. Lu et al., Ceram. Int. 43, 10624–10627 (2017)

    Article  CAS  Google Scholar 

  11. A. Ikesue, Y.L. Aung, J. Am. Ceram. Soc. 100, 26–30 (2017)

    Article  CAS  Google Scholar 

  12. I. Kagomiya, Y. Matsuda, K. Kakimoto et al., Ferroelectrics 387, 1–6 (2009)

    Article  CAS  Google Scholar 

  13. W. Jin, W. Yin, S. Yu et al., Mater. Lett. 173, 47–49 (2016)

    Article  CAS  Google Scholar 

  14. X. Zhang, X. Wang, P. Fu et al., Ceram. Int. 41, 7783–7789 (2015)

    Article  CAS  Google Scholar 

  15. X. Zhang, G. Fan, W. Lu et al., J. Eur. Ceram. Soc. 36, 2767–2772 (2016)

    Article  CAS  Google Scholar 

  16. Y. Zhou, Z. Yue, L. Li, Ferroelectrics 407, 69–74 (2010)

    Article  Google Scholar 

  17. B.W. Hakki, P.D. Coleman, IRE Trans Microw. Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  18. S. Kostić, Z. Lazarević, V. Radojević et al., Mater. Res. Bull. 63, 80–87 (2015)

    Article  Google Scholar 

  19. R.D. Shannon, J. Appl. Phys. 73, 348 (1993)

    Article  CAS  Google Scholar 

  20. Y.J. Lin, S.F. Wang, B.C. Lai et al., J. Eur. Ceram. Soc. 37, 2825–2831 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the national natural science foundation of China (Grant Nos. 61672356, 51702301), the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 08C786), the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province and the Key Laboratory of Science and Technology on High Energy Laser, CAEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengquan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Zhao, C., Huang, G. et al. Crystal structure, sintering behavior and microwave dielectric properties of CaxY3−xAl5−xTixO12 (0 ≤ x ≤ 2.0) solid solution ceramics. J Mater Sci: Mater Electron 29, 17047–17053 (2018). https://doi.org/10.1007/s10854-018-9801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9801-x

Navigation