Skip to main content
Log in

Effect of molar ratio on the microstructure, dielectric and multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb0.8Zr0.2TiO3 nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, Ni0.5Zn0.5Fe2O4/Pb0.8Zr0.2TiO3 nanocomposite with different molar ratio (1: 2, 1: 3, 1: 5, 1: 7) was prepared by hydrothermal method and sol–gel method, and the effect of molar ratio on the microstructure, dielectric and multiferroic properties was systematically investigated. X-ray diffraction and transmission electron microscopy analysis reveal inhomogeneous structures with isolated ferrite embedded into the ferroelectric (FE) matrix. Both the dielectric constant and the loss decrease firstly, and then increase with the increase of molar ratio, which is caused by the different microstructures and the formation of impurity phase. The dielectric resonance peak decreases firstly and then increases with increasing molar ratio, which is based on FE phase transition of Pb0.8Zr0.2TiO3 tuned by the magnetic phase. Among them, the nanocomposite with the molar ratio of 1:5 shows better FE properties and the lowest leakage current density, the saturation polarization, remnant polarization and coercive field are 3.74, 1.51 µC/cm2 and 7.93 kV/cm, respectively, at the measure frequency of 2 kHz. Unexpectedly, the magnetization first decreases and then increase with the increase of molar ratio, this abnormal behavior may be the result of the interface coupling effect between magnetic and FE phases. Also, this high sensitivity of multiferroic properties towards the molar ratio between magnetic and FE phases can be applied to the application in magnetoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.M. Vopson, Crit Rev Solid State Sci. 40, 223–250 (2015)

    Article  CAS  Google Scholar 

  2. S. Dong, J.M. Liu, S.W. Cheong, Adv. Phys. 64, 519–626 (2015)

    Article  CAS  Google Scholar 

  3. D.Z. Montanher, V.F. Freitas, J.R.D. Pereira, J. Appl. Phys. 113, 393 (2013)

    Article  Google Scholar 

  4. F.V. Coeeal, B.D. Bueno, F.D. Carrillo, J. Appl. Phys. 99, 107 (2006)

    Google Scholar 

  5. R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, H.R. Zhang, J.R. Sun, B.G. Shen, Sci. Rep. 6, 20330 (2016)

    Article  CAS  Google Scholar 

  6. G. Sreenivasulu, M. Popov, A.F. Chavez, Appl. Phys. Lett. 104, 2449–2622 (2014)

    Google Scholar 

  7. R.L. Gao, H.W. Yang, J.R. Sun, Y.G. Zhao, B.G. Shen, Appl. Phys. Lett. 104, 031906 (2014)

    Article  Google Scholar 

  8. T. Woldu, B. Raneesh, B.K. Hazra, J. Alloys Compd. 691, 644–652 (2017)

    Article  CAS  Google Scholar 

  9. B.R. Fu, K. Gao, Y. Yang, P. Wang, Europhys. Lett. 112, 27002 (2015)

    Article  Google Scholar 

  10. V. Folen, G. Rado, E. Stalder, Phys. Rev. Lett. 6, 607 (1961)

    Article  CAS  Google Scholar 

  11. R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, X.L. Cao, X.D. Luo, C.L. Fu, Nanoscale 10, 11750–11759 (2018)

    Article  CAS  Google Scholar 

  12. S.G. Lu, Z.K. Xu, Y.P. Wang, S.S. Guo, J. Electroceram. 21, 398–400 (2008)

    Article  CAS  Google Scholar 

  13. R.L. Gao, L. Bai, Z.Y. Xu, Q.M. Zhang, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, C.L. Fu, Adv. Electron. Mater. 4, 18300 (2018)

    Google Scholar 

  14. K.K. Patankar, S.A. Kanade, D.S. Padalkar, B.K. Chougule, Phys. Lett. A 361, 472–477 (2007)

    Article  CAS  Google Scholar 

  15. H. Yang, H. Wang, L. He, L. Shui, X. Yao, J. Appl. Phys. 108, 1–6 (2010)

    Google Scholar 

  16. L.N. Su, P. Liu, Y. He, J. Alloys. Compds. 494, 330–335 (2010)

    Article  CAS  Google Scholar 

  17. R.A. Candeia, M.I.B. Bernardi, E. Longo, I.M.G. Santos, A.G. Souza, Mater. Lett. 58, 569–572 (2004)

    Article  CAS  Google Scholar 

  18. S.B. Reddy, P.P. Singh, N. Raghu, J. Mater. Sci. 37, 929–934 (2002)

    Article  CAS  Google Scholar 

  19. R. Suntako, P. Laoratanakul, N. Traiphol, Ceram. Int. 35, 1227–1233 (2009)

    Article  CAS  Google Scholar 

  20. H. Zheng, J. Wang, S.E. Lofland, Science 303, 661–663 (2004)

    Article  CAS  Google Scholar 

  21. Y. Zhang, H. Sun, W. Chen, Ceram. Int. 41, 8520–8532 (2015)

    Article  CAS  Google Scholar 

  22. Q. Chen, P.Y. Du, L. Jin, W.J. Weng, G.R. Han, Appl. Phys. Lett. 91(1-022912-3), 022912 (2007)

    Article  Google Scholar 

  23. J.P. Zhou, H.C. He, Y. Zhang, C.Y. Deng, Z. Shi, C.W. Nan, Appl. Phys. A89, 553–558 (2007)

    Article  Google Scholar 

  24. A. Testino, L. Mitoseriu, V. Buscaglia, M.T. Buscaglia, I. Pallecchi, A.S. Albuquerque, V. Calzona, D. Marr’e, A.S. Siri, P. Nanni, J. Eur. Ceram. Soc. 26, 3031–3036 (2006)

    Article  CAS  Google Scholar 

  25. C. Nayek, K.K. Sahoo, P. Murugavel, Mater. Res. Bull. 48, 1308–1311 (2013)

    Article  CAS  Google Scholar 

  26. R. Li, F.Z. Rong, L. Zheng, Compon. Mater. 33, 23–28 (2014)

    Google Scholar 

  27. M. Popov, G. Sreenivasulu, V.M. Petrov, AIP Adv. 4, 031101–031382 (2014)

    Article  Google Scholar 

  28. L. Zhang, J. Zhai, W. Mo, et al. Ferroelectrics 406, 213–220 (2010)

    Article  CAS  Google Scholar 

  29. R.Y. Zheng, J. Wang, S. Ramakrishna, J. Appl. Phys. 104, 034106 (2008)

    Article  Google Scholar 

  30. Y. Liu, Y. Wu, D. Li, J. Mater. Sci. Mater. Electron. 24, 1900–1904 (2013)

    Article  CAS  Google Scholar 

  31. R. Sharma, P. Pahuja, R.P. Tandon, Ceram. Int. 40, 9027–9036 (2014)

    Article  CAS  Google Scholar 

  32. R. Sharma, V. Singh, R.K. Kotnala, R.P. Tandon, Mater. Chem. Phys. 160, 447–455 (2015)

    Article  CAS  Google Scholar 

  33. R. Grigalaitis, M.M.V. Petrović, J.D. Bobić, Ceram. Int. 40, 6165–6170 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work has been supported by the National Natural Science Foundation of China (Grant Nos. 51372283, 51402031, 61404018, 11647036), the Natural Science Foundation of Chongqing (CSTC2018jcyjAX0416, CSTC2015jcyjA50003, CSTC2015jcyjA50015, CSTC2016jcyjA0175, CSTC2016jcyjA0349), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1501310, KJ1501318), the Excellent Talent Project in University of Chongqing (Grant No. 2017-35), the Science and Technology Innovation Project of Social Undertakings and Peoples Livelihood Guarantee of Chongqing (Grant No. cstc2017shmsA0192), the Program for Innovation Teams in University of Chongqing, China (Grant No. CXTDX201601032), the Foundation of Chongqing University of Science & Technology (CK2015B05, CK2015Z13), the Latter Foundation Project of Chongqing University of Science & Technology (CKHQZZ2008002), the Scientific & Technological Achievements Foundation Project of Chongqing University of Science & Technology (CKKJCG2016328) and the Postgraduate technology innovation project of Chongqing University of Science & Technology (YKJCX1720205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongli Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., Wang, Z., Gao, R. et al. Effect of molar ratio on the microstructure, dielectric and multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb0.8Zr0.2TiO3 nanocomposite. J Mater Sci: Mater Electron 29, 16226–16237 (2018). https://doi.org/10.1007/s10854-018-9712-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9712-x

Navigation