Skip to main content
Log in

Preparation of (CuS–PVA) interlayer and the investigation their structural, morphological and optical properties and frequency dependent electrical characteristics of Au/(CuS–PVA)/n-Si (MPS) structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Structural, morphological and optical properties of prepared CuS nanostructures were analyzed using XRD, SEM, FTIR, UV–Vis and DRS methods. Experimental results indicated that samples show good crystalline structures. In addition, the particles size and their morphology changed with pH value. UV–Vis absorption shifts to blue by variation of pH and also both the diffuse reflectance and optical absorption of CuS nanostructures have absorption regions of 300–400 nm, respectively. Electrical characteristics of these structures were also investigated in the frequency range of 2 kHz–1 MHz by using impedance–voltage (Z–V) measurements. Experimental results showed that both the value of capacitance (C) and conductance (G/ω) are strong functions of frequency and voltage especially in depletion and accumulation regions due to the effects of surface states (Nss), series resistance (Rs) and interfacial (CuS–PVA) polymer layer. G/ω–V plot revealed a distinctive peak for each frequency in depletion layer and peak positions shift towards to accumulation region with increasing frequency. The voltage dependent profile of the Nss was found from the high–low capacitance (CLF–CHF) and Hill–Coleman methods and obtained values are agreeing with each other. The voltage dependent profile of Rs was also obtained using the Nicollian–Brews method and it decreases with increasing frequency. The obtained mean value of Nss was found at about 2 × 1011 eV−1 cm−2, which is lower and reasonable for an electronic device. Obtained lower values of Nss can be attributed to the passivation effect of the (CuS–PVA) polymer layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Azizian-Kalandaragh, F. Sedaghatdoust-Bodagh, A. Habibi-Yangjeh, Superlattices Microstruct. 81, 151–160 (2015)

    Article  Google Scholar 

  2. M. Jayandran, M.M. Haneefa, V. Balasubramanian, J. Chem. Pharm. Res. 7, 251–259 (2015)

    Google Scholar 

  3. H.R. Ghorbani, F.P. Mehr, H. Pazoki, B.M. Rahimi, Orient. J. Chem. 31, 1219–1221 (2015)

    Article  Google Scholar 

  4. C.A. Rodríguez-Castañeda, P.M. Moreno-Romero, C. Martínez-Alonso, H. Hu, J. Nanomater 2015, 1–10 (2015)

    Article  Google Scholar 

  5. J. Balavijayalakshmi, S. Manju, S. Lavanya, Int. J. Chem. Tech. Res 7, 1284–1289 (2015)

    Google Scholar 

  6. M.J. Chithra, M. Sathya, K. Pushpanathan, Acta Metall. Sin. 28, 394–404 (2015)

    Article  Google Scholar 

  7. K. Swaroop, H.M. Somashekarappa, Res. J. Recent Sci. 4, 197–201 (2015)

    Google Scholar 

  8. J. Uchil, M.J. Pattabi, New Mat. Electrochem. Syst. 8, 155–161 (2005)

    Google Scholar 

  9. A. Phuruangrat, T. Thongtem, S. Thongtem, Chalcogenide Lett. 8, 291–295 (2011)

    Google Scholar 

  10. C. Wu, G. Zhou, D. Mao, Z. Zhang, Y. Wu, W. Wang, L. Luo, L. Wang, Y. Yu, J. Hu, Z. Zhu, Y. Zhang, J. Jie, J. Mater. Sci. Technol. 29, 1047–1052 (2013)

    Article  Google Scholar 

  11. S.S. Dhasade, J.S. Patil, J.V. Thombare, V.J. Fulari, J. Shivaji Univ 41, 1–3 (2015)

    Google Scholar 

  12. D. Yoon, H. Jin, S. Ryu, S. Park, H. Baik, S.J. Oh, S. Haam, C. Joo, K. Lee, Cryst. Eng. Comm. 17, 4627–4631 (2015)

    Article  Google Scholar 

  13. M. Monajjemi, L. Mahdavian, F. Mollaamin, Bull.Chem. Soc. Ethiop. 22, 1–10 (2008)

    Article  Google Scholar 

  14. Z.K. Yang, L.X. Song, Y. Teng, J. Xia, J. Mater. Chem. A 2, 20004–20009 (2014)

    Article  Google Scholar 

  15. H. Li, Y. Zhu, S. Avivi, O. Palchik, J. Xiong, Y. Kottypin, V. Palchik, A. Gedanken, J. Mater. Chem. 12, 3723 (2002)

    Article  Google Scholar 

  16. Q. Wang, N. An, Y. Bai, H. Hang, J. Li, X. Lu, Y. Liu, F. Wang, Z. Li, Z. Lei, Int. J. Hydrog. Energy 38, 10739–10745 (2013)

    Article  Google Scholar 

  17. J.S. Chung, H.-J. Sohn, J. Power Sources 108, 226–231 (2002)

    Article  Google Scholar 

  18. I. Zaafarany, H. Boller, J. Saudi Chem. Soc. 14, 183–189 (2010)

    Article  Google Scholar 

  19. P. Roy, S.K. Srivastava, Mater. Lett. 61, 1607–1693 (2007)

    Article  Google Scholar 

  20. T. Sakamoto, H. Sunamura, H. Kawaura, Appl. Phys. Lett. 82, 3032–3034 (2003)

    Article  Google Scholar 

  21. M. Saranya, A.N. Grace, J. Nano Res. 18, 43–51 (2012)

    Article  Google Scholar 

  22. M. Saranya, G. Srishti, S. Iksha, R. Ramachandran, C. Santhosh, C. Harish, T. Vanchinathan, M. Chandra, M.B. Grace, A. Nirmala, Nanosci. Nanotechnol. Lett. 5, 349–354 (2013)

    Article  Google Scholar 

  23. P. Roy, K. Mondal, S.K. Srivastava, Cryst. Growth Des. 8, 1530–1534 (2008)

    Article  Google Scholar 

  24. G. Shen, D. Chen, K. Tang, X. Liu, L. Huang, Y. Qian, J. Solid State Chem. 173, 232–235 (2003)

    Article  Google Scholar 

  25. P. Roy, S.K. Srivastava, Mater. Lett. 61, 1693–1697 (2007)

    Article  Google Scholar 

  26. M. Guangzhao, D. Wenfei, G.K. Dirk, M. Helmuth, Nano Lett. 4, 249–252 (2004)

    Article  Google Scholar 

  27. W. Wang, L. Ao, Mater. Chem. Phys. 109, 77–81 (2008)

    Article  Google Scholar 

  28. L. Reijnen, B. Meester, F.D. Lange, J. Schoonman, A. Goossens, Chem. Mater. 17, 2724–2728 (2005)

    Article  Google Scholar 

  29. P. Devendran, T. Alagesan, K. Pandian, Asian J. Chem. 25, 79–82 (2013)

    Article  Google Scholar 

  30. A. Phuruangrat, T. Thongtem, S. Thongtem, Powder Technol. 233, 155–160 (2013)

    Article  Google Scholar 

  31. S.A. Yerişkin, M. Balbaşı, İ Orak, J. Mater. Sci.: Mater. Electron. 28, 14040–14048 (2017)

    Google Scholar 

  32. S. Zong-Ping, X. Guo-Xing, Y. Wei-Shen, J. Inorg. Mater. 16, 23–31 (2001)

    Google Scholar 

  33. B. Li, Y. Xie, Y. Xue, J. Phys. Chem. C 111, 12181–12187 (2007)

    Article  Google Scholar 

  34. C.G. Ching, P.K. Ooi, S.S. Ng, Z. Hassan, H. Abu Hassan, M.J. Abdullah, Sains Malays. 43, 923–927 (2014)

    Google Scholar 

  35. J. Xu, X. Cui, J. Zhang, H. Liang, H. Wang, Li, J. Bull. Mater. Sci. 31, 189–192 (2008)

    Article  Google Scholar 

  36. R. Suja, D. Geetha, P. Ramesh, Int. J. Sci. Eng. Res. 4, 1–3 (2013)

    Google Scholar 

  37. M. Saranya, C. Santhosh, R. Ramachandran, A.N. Grace, J. Nanotechnol. 2014, 1–8 (2014)

    Article  Google Scholar 

  38. S. Saeed, N. Rashid, K.S. Ahmad, Turk. J. Chem. 37, 796–804 (2013)

    Article  Google Scholar 

  39. L.Z. Pei, J.F. Wang, X.X. Tao, S.B. Wang, Y.P. Dong, C.G. Fan, Q.-F. Zhang, Mater. Charact. 62, 354–359 (2011)

    Article  Google Scholar 

  40. E.H. Nicollian, J.R. Brews, Metal-Oxide-Semiconductor (MOS) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  41. J. Szatkowski, K. Sieranski, Solid-State Electron. 35, 1013–1015 (1992)

    Article  Google Scholar 

  42. S. Alialy, H. Tecimer, H. Uslu, Ş Altındal,, J. Nanomed. Nanotechol. 4, 167–173 (2013)

    Google Scholar 

  43. S. Demirezen, A. Kaya, S.A. Yerişkin, M. Balbaşı, İ Uslu, Results Phys. 6, 180–185 (2016)

    Article  Google Scholar 

  44. S. Altindal, B. Sari, H.I. Unal, N. Yavas, J. Appl. Polym. Sci. 113, 2955–2961 (2009)

    Article  Google Scholar 

  45. E.E. Tanrıkulu, S. Demirezen, Ş Altındal, İ Uslu, J. Mater. Sci.: Mater. Electron. 28, 8844–8856 (2017)

    Google Scholar 

  46. W.A. Hill, C.C. Coleman, Solid State Electron. 23, 987–993 (1980)

    Article  Google Scholar 

  47. G. Ersöz, İ Yücedağ, Y. Azizian-Kalandaragh, İ Orak, Ş Altındal, IEEE Trans. Electron Devices 63, 2948–2955 (2016)

    Article  Google Scholar 

  48. Ç Bilkan, Ş Altındal, J. Alloy. Compd. 708, 467–469 (2017)

    Article  Google Scholar 

  49. H. Tecimer, S.O. Tan, Ş Altındal, IEEE Trans. Electron Devices 65, 231–236 (2018)

    Article  Google Scholar 

  50. S. Altındal Yerişkin, M. Balbaşı, İ Orak, J. Mater. Sci.: Mater. Electron. 28, 7819–7826 (2017)

    Google Scholar 

  51. N. Baraz, İ Yücedağ, Y. Azizian-Kalandaragh, G. Ersöz, İ Orak, Ş Altındal, B. Akbari, H. Akbari, J. Electron. Mater. 46, 4276–4286 (2017)

    Article  Google Scholar 

  52. S.A. Yerişkin, M. Balbaşı, A. Tataroğlu,, J. Appl. Polym. Sci. 133, 43827 (2016)

    Google Scholar 

  53. İ Taşçıoğlu, ÖT. Özmen, H.M. Şağban, E. Yağlıoğlu, Ş Altıındal, J. Electron. Mater. 46, 2379–2386 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Erbilen Tanrıkulu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbilen Tanrıkulu, E., Altındal, Ş. & Azizian-Kalandaragh, Y. Preparation of (CuS–PVA) interlayer and the investigation their structural, morphological and optical properties and frequency dependent electrical characteristics of Au/(CuS–PVA)/n-Si (MPS) structures. J Mater Sci: Mater Electron 29, 11801–11811 (2018). https://doi.org/10.1007/s10854-018-9280-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9280-0

Navigation