Skip to main content

Advertisement

Log in

Facile controlled synthesis of MnO2 nanostructures for high-performance anodes in lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

At present, new electrode materials still need to be developed to enhance the energy density, cyclability, initial coulombic efficiency and rate capability of lithium-ion batteries (LIBs). Here, we report a simple, rapid, cost-effective and novel technology to prepare MnO2 through the decomposition of KMnO4 under different pH values without surfactants or high temperatures. Moreover, the formation mechanisms of curly MnO2 nanosheets, flower-like MnO2 and onion-like MnO2 are analyzed in depth. The great variation in the electrochemical performance of MnO2 prepared under different pH values clearly indicates the importance of the nanostructure. Furthermore, curly MnO2 nanoflakes fabricated at pH 2 (pH2-MnO2) show good initial coulombic efficiency (ca. 80%) and long cyclability (ca. 1038 mAh g−1 over 150 cycles), which is attributed to their relatively large surface area and stable structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-Ion Batteries (Springer, New York, 2009)

    Book  Google Scholar 

  2. H.D. Yoo, E. Markevich, G. Salitra, D. Sharon, D. Aurbach, Mater. Today 17, 110 (2014)

    Article  Google Scholar 

  3. D. Guerard, A. Herold, Carbon N Y 13, 337 (1975)

    Article  Google Scholar 

  4. S. Goriparti, E. Miele, F. De Angelis, E.Di Fabrizio, R.Proietti Zaccaria, C. Capiglia, J. Power Sources 257, 421 (2014)

    Article  Google Scholar 

  5. X. Lou, J. Huang, T. Li, H. Hu, B. Hu, Y. Zhang, J. Mater. Sci. Mater. Electron 25, 1193 (2014)

    Article  Google Scholar 

  6. S. Zhang, W. He, X. Zhang, X. Yang, J. Mater. Sci. Mater. Electron 26, 2189 (2015)

    Article  Google Scholar 

  7. S. Deng, L. Wang, T. Hou, Y. Li, J. Phys. Chem. C 119, 28783 (2015)

    Article  Google Scholar 

  8. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364 (2013)

    Article  Google Scholar 

  9. L.I.U. Ting-Ting, S. Guang-Jie, J.I. Ming-Tong, M.A. Zhi-Peng, Asian J. Chem. 25, 7065 (2013)

    Article  Google Scholar 

  10. T. Bai, H. Zhou, X. Zhou, Q. Liao, S. Chen, J. Yang, J. Mater. Sci. 52, 11608 (2017)

    Article  Google Scholar 

  11. R. Han, S. Xing, Z. Ma, Y. Wu, Y. Gao, J. Mater. Sci. 47, 3822 (2012)

    Article  Google Scholar 

  12. A. Zahoor, H.S. Jang, J.S. Jeong, M. Christy, Y.J. Hwang, K.S. Nahm, RSC Adv. 4, 8973 (2014)

    Article  Google Scholar 

  13. J. Zhou, L. Yu, M. Sun et al., Ind. Eng. Chem. Res. 52, 9586 (2013)

    Article  Google Scholar 

  14. J. Chen, Y. Wang, X. He et al., Electrochim. Acta 142, 152 (2014)

    Article  Google Scholar 

  15. J. Li, B. Xi, Y. Zhu, Q. Li, Y. Yan, Y. Qian, J. Alloys Compd. 509, 9542 (2011)

    Article  Google Scholar 

  16. Y. Jiang, Z.-J. Jiang, B. Chen et al., J. Mater. Chem. A 4, 2643 (2016)

    Article  Google Scholar 

  17. Y. Li, J. Wang, Y. Zhang et al., J. Colloid Interface Sci. 369, 123 (2012)

    Article  Google Scholar 

  18. F. Shi, F. Wang, H. Dai et al., Appl. Catal. A 433–434, 206 (2012)

    Article  Google Scholar 

  19. J. Zhao, Z. Tao, J. Liang, J. Chen, Cryst. Growth Des. 8, 2799 (2008)

    Article  Google Scholar 

  20. Y. Zhao, W. Ran, J. He et al., Small 11, 1310 (2015)

    Article  Google Scholar 

  21. D. He, X. He, K. Wang et al., Chem. Commun. 50, 11049 (2014)

    Article  Google Scholar 

  22. H. Fei, N. Saha, N. Kazantseva, R. Moucka, Q. Cheng, P. Saha, Materials (Basel) 10, 1251 (2017)

    Article  Google Scholar 

  23. T.T. Truong, Y. Liu, Y. Ren, L. Trahey, Y. Sun, ACS Nano 6, 8067 (2012)

    Article  Google Scholar 

  24. S. Deng, V. Berry, Mater. Today 19, 197 (2016)

    Article  Google Scholar 

  25. Y. Liu, Z. Chen, C.-H. Shek, C.L. Wu, J.K. Lai, ACS Appl. Mater. Interfaces 6, 9776 (2014)

    Article  Google Scholar 

  26. Y. Zhao, P. Jiang, S.-S. Xie, J. Power Sources 239, 393 (2013)

    Article  Google Scholar 

  27. H. Zhu, J. Luo, H. Yang et al., J. Phys. Chem. C 112, 17089 (2008)

    Article  Google Scholar 

  28. P. Xiong, R. Ma, N. Sakai, X. Bai, S. Li, T. Sasaki, ACS Appl. Mater. Interfaces 9, 6282 (2017)

    Article  Google Scholar 

  29. H. Xia, M. Lai, L. Lu, J. Mater. Chem. 20, 6896 (2010)

    Article  Google Scholar 

  30. J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, Carbon N Y 61, 190 (2013)

    Article  Google Scholar 

  31. M. Huang, Y. Zhang, F. Li et al. 4, 4518 (2014)

  32. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon N Y 48, 3825 (2010)

    Article  Google Scholar 

  33. R.R. Salunkhe, H. Ahn, J.H. Kim, Y. Yamauchi, Nanotechnology 26, 204004 (2015)

    Article  Google Scholar 

  34. M.T. Greiner, L. Chai, M.G. Helander, W.-M. Tang, Z.-H. Lu, Adv. Funct. Mater. 22, 4557 (2012)

    Article  Google Scholar 

  35. K. Wen, G. Chen, F. Jiang, X. Zhou, J. Yang, Int. J. Electrochem. Sci. 10, 3859 (2015)

    Google Scholar 

  36. X. Fang, X. Lu, X. Guo et al., Electrochem. Commun. 12, 1520 (2010)

    Article  Google Scholar 

  37. Y. Sun, N. Huang, X. Sun et al., Int. J. Hydrogen Energy 42, 20016 (2017)

    Article  Google Scholar 

  38. M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, J. Power Sources 195, 7904 (2010)

    Article  Google Scholar 

  39. D.H. Olson, K.D. Shaughnessy, E.G. Langford et al., MRS Adv. 1, 3929 (2016)

    Article  Google Scholar 

  40. L. Luo, J. Wu, J. Xu, V.P. Dravid, ACS Nano 8, 11560 (2014)

    Article  Google Scholar 

  41. X. Li, H. Song, H. Wang et al., J. Appl. Electrochem. 42, 1065 (2012)

    Article  Google Scholar 

  42. B. Sun, Z. Chen, H.-S. Kim, H. Ahn, G. Wang, J. Power Sources 196, 3346 (2011)

    Article  Google Scholar 

  43. Y. Zhang, H. Liu, Z. Zhu et al., Electrochim. Acta 108, 465 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant Number 20131102110016); and the China Postdoctoral Science Foundation (Grant Number 157212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1002 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Shen, Z., Zhang, X. et al. Facile controlled synthesis of MnO2 nanostructures for high-performance anodes in lithium-ion batteries. J Mater Sci: Mater Electron 30, 1480–1486 (2019). https://doi.org/10.1007/s10854-018-0418-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0418-x

Navigation