Skip to main content
Log in

Fabrication of highly electrically conductive Ti/Ag/Ti tri-layer and Ti–Ag alloy thin films on PET fabrics by multi-target magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study Ti/Ag/Ti tri-layer and Ti–Ag alloy films were deposited on the surfaces of polyethylene terephthalate (PET) fabrics by multi-target magnetron sputtering system to fabricate highly electro-conductive textiles. Before sputtering, the fabric was treated by polyacrylic acid ester (PA) to form a continuous surface on the surface of PET fabric by padding method. The as-fabricated fabrics were characterized by scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometer. And the physical properties of the coated fabrics were evaluated by electrical conductivity, contact angle (CA), flexibility and adhesion. At last, a simple electric circuit was made with the as-treated fabric to evaluate the electrical property and explore its application further. The results of the study revealed that pretreatment with PA could form a continuous film on the surface of PET fabric. The PA-coated PET fabric with Ti/Ag/Ti fabric exhibited excellent electrical property whose electrical resistivity was only 5.1 × 10−7 Ω m, CA of 137°. The PA-coated PET fabric with Ti–Ag alloy film exhibited a rather lower electrical resistivity of 3.4 × 10−7 Ω m, CA of about 130°. Moreover, the samples retain ideal flexibility and adhesion. Therefore this study can broaden the application area of magnetron sputtering on discontinuous surface to fabricate electrical conductive fabric. And due to the excellent electro-conductivity, this kind of fabric will be a promising material for smart textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X. Liu, H. Chang, Y. Li, W.T. Huck, Z. Zheng, ACS Appl. Mater. Interfaces 2, 529 (2010)

    Article  CAS  Google Scholar 

  2. L. Hu, M. Pasta, F.L. Mantia, L.F. Cui, S. Jeong, H.D. Deshazer, Nano Lett. 10, 708 (2010)

    Article  CAS  Google Scholar 

  3. S. Liu, M. Hu, J. Yang, J. Mater. Chem. 4, 1320 (2016)

    CAS  Google Scholar 

  4. J. Li, L. Yan, Y. Zhao, F. Zha, Q. Wang, Z. Lei, Phys. Chem. Chem. Phys. 17, 6451 (2015)

    Article  CAS  Google Scholar 

  5. T. Wang, G. Liu, J. Kong, Sci. Rep. 5, 18328 (2015)

    Article  CAS  Google Scholar 

  6. Y. Liu, J. Tang, R. Wang, H. Lu, L. Li, Y. Kong, J. Mater. Chem. 17, 1071 (2007)

    Article  CAS  Google Scholar 

  7. S. Nagappan, C.S. Ha, J. Mater. Chem. 3, 3224 (2015)

    Article  CAS  Google Scholar 

  8. S.X. Jiang, W.F. Qin, R.H. Guo, L. Zhang, Surf. Coat. Technol. 204, 3662 (2010)

    Article  CAS  Google Scholar 

  9. Q. Wei, Q. Li, D. Hou, Z. Yang, W. Gao, Surf. Coat. Technol. 201, 1821 (2006)

    Article  CAS  Google Scholar 

  10. S.X. Jiang, W.F. Qin, X.M. Tao, Z.M. Zhang, C.W.M. Yuen, J. Xiong, Fiber Polym. 12, 616 (2011)

    Article  CAS  Google Scholar 

  11. J. Yip, S. Jiang, C. Wong, Surf. Coat. Technol. 204, 380 (2009)

    Article  CAS  Google Scholar 

  12. N. Mengal, I.A. Sahito, A.A. Arbab, K.C. Sun, M.B. Qadir, A.A. Memon, Carbohydr. Polym. 152, 19 (2016)

    Article  CAS  Google Scholar 

  13. K. Sugawara, M. Kawamura, Y. Abe, K. Sasaki, Microelectron. Eng. 84, 2476 (2007)

    Article  CAS  Google Scholar 

  14. T.L. Alford, L. Chen, K.S. Gadre, Thin Solid Films 429, 248 (2003)

    Article  CAS  Google Scholar 

  15. H.C. Kim, N.D. Theodore, T.L. Alford, J. Appl. Phys. 95, 5180 (2004)

    Article  CAS  Google Scholar 

  16. D.R. Sahu, J.L. Huang, Thin Solid Films 515, 876 (2006)

    Article  CAS  Google Scholar 

  17. D. Lide, Handbook of Chemistry and Physics, 84th edn. (CRC, America, 2003), pp. 12–45

    Google Scholar 

  18. K. Sugawara, Y. Minamide, M. Kawamura, Y. Abe, K. Sasaki, Vacuum 83, 610 (2008)

    Article  CAS  Google Scholar 

  19. J.L. Murray, Bull. Alloy Ph. Diagr. 4, 81 (1983)

    Article  Google Scholar 

  20. S.W. Chen, C.H. Koo, Mater. Lett. 61, 4097 (2007)

    Article  CAS  Google Scholar 

  21. M. Kawamura, D. Fukuda, Y. Inami, Y. Abe, K. Sasaki, J. Vac. Sci. Technol. A 27, 975 (2009)

    Article  CAS  Google Scholar 

  22. M. Kawamura, Y. Inami, Y. Abe, K. Sasaki, Jpn. J. Appl. Phys. 47, 8917 (2008)

    Article  CAS  Google Scholar 

  23. W.C. Shih, K.S. Kao, D.L. Cheng, C.J. Chung, P.T. Hsieh, S.L. Ou, Surf. Coat. Technol. 219, 139 (2013)

    Article  CAS  Google Scholar 

  24. D. Miao, S. Jiang, S. Shang, Z. Chen, Vacuum 106, 1 (2014)

    Article  CAS  Google Scholar 

  25. S. Jiang, J. Xu, Z. Chen, R. Guo, D. Miao, L. Peng, J. Mater. Sci. Mater. Electron. 10, 1 (2018)

    Google Scholar 

  26. Y. Masuda, Handbook of Chemistry, 4th edn. (Akadémiai Kiadó, Tokyo, 1993), pp. 286–293

    Google Scholar 

  27. D. Miao, S. Jiang, H. Zhao, S. Shang, Z. Chen, J. Alloys Compd. 616, 26 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the General Financial Grant (Grant No.: 2017M612207) from the China Postdoctoral Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagang Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Xu, J., Liu, Z. et al. Fabrication of highly electrically conductive Ti/Ag/Ti tri-layer and Ti–Ag alloy thin films on PET fabrics by multi-target magnetron sputtering. J Mater Sci: Mater Electron 29, 19578–19587 (2018). https://doi.org/10.1007/s10854-018-0089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0089-7

Navigation