Skip to main content
Log in

Solid-state synthesis of ZnO nanorods coupled with reduced graphene oxide for photocatalytic application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO is an excellent semiconductor material for photocatalytic application. To overcome the photocorrosion of ZnO and improve its stability, nanorods (NRs) structured ZnO is prepared by an environment-friendly solid state synthesis method, and the composite of ZnO with different mass ratio of reduced graphene oxide (RGO) are obtained via a hydrothermal reaction. According to the photocatalytic results, 5% RGO composited with ZnO NRs degrades the methylene orange solution completely (98%) in 50 min under UV light irradiation, whereas bare ZnO NRs just degrade 40.9%. The transient photocurrent responses and electronical impedance spectroscopy tests are carried out to illustrate the mechanism of RGO in the nanocomposite for the enhancement of the photocatalytic performance. This composite of ZnO/RGO has demonstrated a great potential for high efficient and stable photocatalytic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J. Photochem. Photobiol. C 9, 1–12 (2008)

    Article  Google Scholar 

  2. L. Zhang, Y. Li, Q. Zhang, H. Wang, Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants. CrystEngComm 15, 5986–5993 (2013)

    Article  Google Scholar 

  3. Y. Wang, D. Wang, B. Yan, Y. Chen, C. Song, Fabrication of diverse CuO nanostructures via hydrothermal method and their photocatalytic properties. J. Mater. Sci.: Mater. Electron. 27, 6918–6924 (2016)

    Google Scholar 

  4. Y. Wang, T. Jiang, D. Meng, J. Yang, Y. Li, Q. Ma, J. Han, Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties. Appl. Surf. Sci. 317, 414–421 (2014)

    Article  Google Scholar 

  5. Y. Yang, W. Que, X. Zhang, Y. Xing, X. Yin, Y. Du, Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation. J. Hazard. Mater. 317, 430–439 (2016)

    Article  Google Scholar 

  6. L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, Z. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 164, H651–H656 (2017)

    Google Scholar 

  7. J. Liu, S. Yang, W. Wu, Q. Tian, S. Cui, Z. Dai, F. Ren, X. Xiao, C. Jiang, 3D Flowerlike α-Fe2O3@TiO2 core–shell nanostructures: general synthesis and enhanced photocatalytic performance. ACS Sustain. Chem. Eng. 3, 2975–2984 (2015)

    Article  Google Scholar 

  8. S. Rajendran, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta, S. Arumainathan, Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci. Rep. 6, 31641 (2016)

    Article  Google Scholar 

  9. J. Jiang, H. Wang, X. Chen, S. Li, T. Xie, D. Wang, Y. Lin, Enhanced photocatalytic degradation of phenol and photogenerated charges transfer property over BiOI-loaded ZnO composites. J. Colloid Interface Sci. 494, 130–138 (2017)

    Article  Google Scholar 

  10. L. Wang, S. Liu, Z. Wang, Y. Zhou, Y. Qin, Z.L. Wang, Piezotronic effect enhanced photocatalysis in strained anisotropic ZnO/TiO2 nanoplatelets via thermal stress. ACS Nano 10, 2636–2643 (2016)

    Article  Google Scholar 

  11. P. Cheng, Y. Wang, L. Xu, P. Sun, Z. Su, F. Jin, F. Liu, Y. Sun, G. Lu, High specific surface area urchin-like hierarchical ZnO-TiO 2 architectures: hydrothermal synthesis and photocatalytic properties. Mater. Lett. 175, 52–55 (2016)

    Article  Google Scholar 

  12. T. Xu, S. Venkatesan, D. Galipeau, Q. Qiao, Study of polymer/ZnO nanostructure interfaces by Kelvin probe force microscopy. Sol. Energy Mater. Sol. Cells 108, 246–251 (2013)

    Article  Google Scholar 

  13. Y. Xia, J. Wang, J.-L. Xu, X. Li, D. Xie, L. Xiang, S. Komarneni, Confined formation of ultrathin ZnO nanorods/reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO2 sensors, ACS Appl. Mater. Interfaces, 8, 35454–35463 (2016)

    Article  Google Scholar 

  14. G. Katwal, M. Paulose, I.A. Rusakova, J.E. Martinez, O.K. Varghese, Rapid growth of zinc oxide nanotube–nanowire hybrid architectures and their use in breast cancer-related volatile organics detection. Nano Lett. 16, 3014–3021 (2016)

    Article  Google Scholar 

  15. M. Drobek, J.-H. Kim, M. Bechelany, C. Vallicari, A. Julbe, S.S. Kim, MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity. ACS Appl. Mater. Interfaces 8, 8323–8328 (2016)

    Article  Google Scholar 

  16. A. Barhoum, J. Melcher, G. Van Assche, H. Rahier, M. Bechelany, M. Fleisch, D. Bahnemann, Synthesis, growth mechanism, and photocatalytic activity of zinc oxide nanostructures: porous microparticles versus nonporous nanoparticles. J. Mater. Sci. 52, 2746–2762 (2017)

    Article  Google Scholar 

  17. C. Wang, X. Tan, J. Yan, B. Chai, J. Li, S. Chen, Electrospinning direct synthesis of magnetic ZnFe2O4/ZnO multi-porous nanotubes with enhanced photocatalytic activity. Appl. Surf. Sci. 396, 780–790 (2017)

    Article  Google Scholar 

  18. T. Kuila, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 5, 52–71 (2013)

    Article  Google Scholar 

  19. Y. Zhu, J. Xue, T. Xu, G. He, H. Chen, Enhanced photocatalytic activity of magnetic core–shell Fe3O4@ Bi2O3–RGO heterojunctions for quinolone antibiotics degradation under visible light. J. Mater. Sci.: Mater. Electron. 28, 1–10 (2017)

    Google Scholar 

  20. C. Cheng, R. Fan, Z. Wang, Q. Shao, X. Guo, P. Xie, Y. Yin, Y. Zhang, L. An, Y. Lei, J.E. Ryu, A. Shankar, Z. Guo, Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures. Carbon 125, 103–112 (2017)

    Article  Google Scholar 

  21. K. Zhang, G.-H. Li, L.-M. Feng, N. Wang, J. Guo, K. Sun, K.-X. Yu, J.-B. Zeng, T. Li, Z. Guo, M. Wang, Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(l-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J. Mater. Chem. C 5, 9359–9369 (2017)

    Article  Google Scholar 

  22. X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir 29, 3097–3105 (2013)

    Article  Google Scholar 

  23. A.L. Palma, L. Cinà, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, A. Di Carlo, Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy 22, 349–360 (2016)

    Article  Google Scholar 

  24. T. Liu, K. Yu, L. Gao, H. Chen, N. Wang, L. Hao, T. Li, H. He, Z. Guo, A graphene quantum dot decorated SrRuO3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells. J. Mater. Chem. A 5, 17848–17855 (2017)

    Article  Google Scholar 

  25. H. Jin, Q. Chen, Z. Chen, Y. Hu, J. Zhang, Multi-LeapMotion sensor based demonstration for robotic refine tabletop object manipulation task. CAAI Trans. Intell. Technol. 1, 104–113 (2016)

    Article  Google Scholar 

  26. Y. Shi, K. Wang, Y. Du, H. Zhang, J. Gu, C. Zhu, L. Wang, W. Guo, A. Hagfeldt, N. Wang, Solid-state synthesis of ZnO nanostructures for quasi-solid dye-sensitized solar cells with high efficiencies up to 6.46%. Adv. Mater. 25, 4413–4419 (2013)

    Article  Google Scholar 

  27. T. Xu, J. Hu, Y. Yang, W. Que, X. Yin, H. Wu, L. Chen, Ternary system of ZnO nanorods/reduced graphene oxide/CuInS2 quantum dots for enhanced photocatalytic performance. J. Alloys Compd. 734, 196–203 (2018)

    Article  Google Scholar 

  28. Z. Chen, N. Zhang, Y.-J. Xu, Synthesis of graphene–ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion. CrystEngComm 15, 3022–3030 (2013)

    Article  Google Scholar 

  29. C. Han, M.-Q. Yang, B. Weng, Y.-J. Xu, Improving the photocatalytic activity and anti-photocorrosion of semiconductor ZnO by coupling with versatile carbon. Phys. Chem. Chem. Phys. 16, 16891–16903 (2014)

    Article  Google Scholar 

  30. S. Ma, J. Xue, Y. Zhou, Z. Zhang, Photochemical synthesis of ZnO/Ag2O heterostructures with enhanced ultraviolet and visible photocatalytic activity. J. Mater. Chem. A 2, 7272–7280 (2014)

    Article  Google Scholar 

  31. L. Wu, F. Li, Y. Xu, J.W. Zhang, D. Zhang, G. Li, H. Li, Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Appl. Catal. B 164, 217–224 (2015)

    Article  Google Scholar 

  32. J. Yu, J. Jin, B. Cheng, M. Jaroniec, A noble metal-free reduced graphene oxide–CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mater. Chem. A 2, 3407–3416 (2014)

    Article  Google Scholar 

  33. Z. Li, F. Gao, N.C. Greenham, C.R. Mcneill, Comparison of the operation of polymer/fullerene, polymer/polymer, and polymer/nanocrystal solar cells: a transient photocurrent and photovoltage study. Adv. Funct. Mater. 21, 1419–1431 (2011)

    Article  Google Scholar 

  34. T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl. Catal. B 101, 382–387 (2011)

    Article  Google Scholar 

  35. X. Men, H. Chen, K. Chang, X. Fang, C. Wu, W. Qin, S. Yin, Three-dimensional free-standing ZnO/graphene composite foam for photocurrent generation and photocatalytic activity. Appl. Catal. B 187, 367–374 (2016)

    Article  Google Scholar 

  36. Y.C. Chen, K.I. Katsumata, Y.H. Chiu, K. Okada, N. Matsushita, Y.J. Hsu, ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation. Appl. Catal. A 490, 1–9 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the financial supports from the National Natural Science Foundation of China (51502246), the Seed Foundation of Innovation and Creation for Graduate Students at Northwestern Polytechnical University (NPU) (Z2017193) and Undergraduate Student Innovation Training Program of NPU (201710699284).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingting Xu or Wenxiu Que.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Hu, J., Yang, Y. et al. Solid-state synthesis of ZnO nanorods coupled with reduced graphene oxide for photocatalytic application. J Mater Sci: Mater Electron 29, 4888–4894 (2018). https://doi.org/10.1007/s10854-017-8447-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8447-4

Navigation