Skip to main content
Log in

Influence of different synthesis methods on structure, morphology and luminescent properties of BiOCl:Eu3+ phosphors and J–O analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The BiOCl:Eu3+ phosphors were successfully synthesized by the solid state route and hydrothermal method, respectively. The influence of different synthesis methods on morphology and luminescent properties of BiOCl:Eu3+ phosphors was investigated by X-ray diffraction, Field emission scanning electron microscope, Raman spectra and photoluminescence spectrometer. Moreover, the BiOCl:Eu3+ structure was refined according to the Rietveld refinement method. The results indicated that BiOCl:Eu3+ phosphors synthesized by hydrothermal method were better than solid state method in terms of morphology and luminescence. The influence of pH was further investigated by hydrothermal method. It was found that the optimum condition of hydrothermal method was 160 °C, 10 h and pH = 6. In addition, Judd–Ofelt theory was employed to calculate the radiative parameters and optical properties such as intensity parameters (Ω2, Ω4), transition probability (AR, AN), radiative life time (τ), quantum efficiency (η), stimulated emission cross-section (σe) and gain bandwidth (σe × Δλeff). The calculation showed that the prepared phosphors possess longer lifetime and higher quantum efficiency. Significantly, the BiOCl:Eu3+ phosphors with better stimulated emission cross-section (σe) and gain bandwidth (σe × Δλeff) are suitable to apply in the field of optical display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.N. Game, N.B. Ingale, S.K. Omanwar, J. Mater. Sci. 28, 915 (2017)

    Google Scholar 

  2. W. Zheng, D.T. Xu, Y.S. Liu, Sci. China Chem. 44, 168 (2014)

    Google Scholar 

  3. Q.L. Kuang, Y.J. Li, J.B. Qiu, Spectrosc. Spectr. Anal. 35, 889 (2015)

    Google Scholar 

  4. L. Sun, Q. Lu., Mao. Z, J. Mater. Sci. 26, 2647 (2015)

    Google Scholar 

  5. I.P. Sahu, D.P. Bisen, N. Brahme, J. Mater. Sci. 27, 1828 (2016)

    Google Scholar 

  6. P.Y. Wei, Q.L. Yang, L. Guo, Prog. Chem 21, 1734 (2009)

    Google Scholar 

  7. S.S. Khalil, V. Uvarov, Y. Kritsman, Catal. Commun. 12, 1136 (2011)

    Article  Google Scholar 

  8. S. Fuchi, W. Ishikawa, S. Nishimura, J. Mater. Sci. 28, 7042 (2017)

    Google Scholar 

  9. Z.Y. Zhao, W.W. Dai, Inorg. Chem. 53, 13001 (2014)

    Article  Google Scholar 

  10. R. Saraf, C. Shivakumara, S. Behera, H. Nagabhushana, RSC Adv. 5, 4109 (2015)

    Article  Google Scholar 

  11. C. Shivakumara, R. Saraf, P. Halappa, Dyes Pigm. 126, 154 (2016)

    Article  Google Scholar 

  12. Y.J. Li, Z.G. Song, C. Li, Acta Phys. Sin. 64, 177803 (2015)

    Google Scholar 

  13. H.Y. Chen, H.L. Lai, R.Y. Yang, J. Mater. Sci. 27, 2963 (2016)

    Google Scholar 

  14. Y.T. ZHOU, Z.G. Song, Y.J. Li, J. Rare. Earth 34, 1188 (2016)

    Article  Google Scholar 

  15. H. Koc, H. Akkus, A.M. Mamedov, Gazi Univ. J. Sci. 25, 9 (2012)

    Google Scholar 

  16. A. Dash, S. Sarkar, V.N.K.B. Adusumalli, J. Lumin. 30, 1401 (2014)

    Google Scholar 

  17. K. Momma, F. Izumi, J. Appl. Crystallogr. 41, 653 (2008)

    Article  Google Scholar 

  18. J.L. Soubeyroux, S.F. Mater, J.M. Reau, Solid State Ionics 14, 337 (1984)

    Article  Google Scholar 

  19. W.J. Tang, L. Zeng, J. S.-Cent. Univ. Natl. 30, 15 (2011)

    Google Scholar 

  20. S.H. Cao, C.F. Guo, Y. Lv, Nanotechnology 20, 275702 (2009)

    Article  Google Scholar 

  21. W.G. Fateley, N.T. Mcdecitt, F.F. Bentley, Appl. Spectrosc. 25, 155 (1971)

    Article  Google Scholar 

  22. K. Zhang, J. Liang, S. Wang, Cryst. Growth Des. 12, 793 (2012)

    Article  Google Scholar 

  23. Q. Liu, Y.J. Li, Z.G. Song, J. Rare Earth 33, 1098 (2015)

    Article  Google Scholar 

  24. J.Y. Xiong, G. Cheng, G.F. Li, RSC Adv. 1, 1542 (2011)

    Article  Google Scholar 

  25. B.R. Judd, Phys. Rev. 127, 750 (1962)

    Article  Google Scholar 

  26. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)

    Article  Google Scholar 

  27. L.N. Sun, Q.Y. Meng, X.H. Feng, Spectrosc. Spectr. Anal. 31, 3218 (2011)

    Google Scholar 

  28. S. Dutta, S. Som, S.K. Sharma, RSC. Adv. 5, 7380 (2015)

    Article  Google Scholar 

  29. R.S. Saraf, N. Dhananjaya, S. Behera, J. Mater. Sci. 50, 287 (2015)

    Article  Google Scholar 

  30. S.Y. Cao, Q.J. Ning, C.L. Yu, J. Alloys Compd. 691, 323 (2017)

    Article  Google Scholar 

  31. T. Grzyb, S. Lis, Inorg. Chem. 50, 8112 (2011)

    Article  Google Scholar 

  32. M.C. Pujol, J.J. Carvajal, X. Mateos, J. Lumin. 138, 77 (2013)

    Article  Google Scholar 

  33. K. Swapna, S. Mahamuda, A.S. Rao, J. Lumin. 156, 80 (2014)

    Article  Google Scholar 

  34. M. Ferhi, C. Bouzidi, K.H. Naifer, J. Lumin. 157, 21 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Industrial Research Project of Shaanxi Province (No. 2015GY173).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Dong, C. & Shi, J. Influence of different synthesis methods on structure, morphology and luminescent properties of BiOCl:Eu3+ phosphors and J–O analysis. J Mater Sci: Mater Electron 29, 186–194 (2018). https://doi.org/10.1007/s10854-017-7903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7903-5

Navigation