Skip to main content
Log in

Vertically-aligned Mn(OH)2 nanosheet films for flexible all-solid-state electrochemical supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH)2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 F g−1 at 1.0 A g−1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. The solid devices exhibit high volumetric capacitance of 39.3 mF cm−3 at the current density 0.3 mA cm−3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Yang, W. Mai, Nano Energy 8, 274–290 (2014)

    Article  Google Scholar 

  2. D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, Y. Chen, Nat. Nanotechnol. 9, 555–562 (2014)

    Article  Google Scholar 

  3. X. Lu, M. Yu, G. Wang, Y. Tong, Y. Li, Energy Environ. Sci. 7, 2160–2181 (2014)

    Article  Google Scholar 

  4. J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, Y. Gogotsi, Science 328, 480–483 (2010)

    Article  Google Scholar 

  5. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  6. H. Jiang, P.S. Lee, C. Li, Energy Environ. Sci. 6, 41–53 (2013)

    Article  Google Scholar 

  7. X. Zhang, J. Jin, P. Yan, J. Xu, R. Zhang, C. Wu, Mater. Lett. 160, 190–193 (2015)

    Article  Google Scholar 

  8. K. Jia, X. Zhuang, B. Cheng, S. Shi, Z. Shi, B. Zhang, J. Mater. Sci. 24, 4769–4773 (2013)

    Google Scholar 

  9. K.-M. Lin, K.-H. Chang, C.-C. Hu, Y.-Y. Li, Electrochim. Acta 54, 4574–4581 (2009)

    Article  Google Scholar 

  10. P. Wang, Y. Xu, H. Liu, Y. Chen, J. Yang, Q. Tan, Nano Energy 15, 116–124 (2015)

    Article  Google Scholar 

  11. D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, C.-J. Park, Electrochim. Acta 103, 103–109 (2013)

    Article  Google Scholar 

  12. X. Zhang, X. Meng, S. Gong, P. Li, L.e.. Jin, Q. Cao, Mater. Lett. 179, 73–77 (2016)

    Article  Google Scholar 

  13. J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4, 1300816 (2014)

    Article  Google Scholar 

  14. B. Yin, S. Zhang, H. Jiang, F. Qu, X. Wu, J. Mater. Chem. A 3, 5722–5729 (2015)

    Article  Google Scholar 

  15. J. Zhu, S. Tang, H. Xie, Y. Dai, X. Meng, ACS Appl. Mater. Interfaces 6, 17637–17646 (2014)

    Article  Google Scholar 

  16. Z. Li, Z. Liu, D. Li, B. Li, Q. Li, Y. Huang, H. Wang, J. Mater. Sci. 26, 353–359 (2015)

    Google Scholar 

  17. D. Yan, Y. Li, Y. Liu, R. Zhuo, Z. Wu, B. Geng, J. Wang, P. Ren, P. Yan, Z. Geng, Mater. Lett. 136, 7–10 (2014)

    Article  Google Scholar 

  18. J. Xiao, L. Wan, S. Yang, F. Xiao, S. Wang, Nano Lett. 14, 831–838 (2014)

    Article  Google Scholar 

  19. N. Wang, P. Zhao, K. Liang, M. Yao, Y. Yang, W. Hu, Chem. Eng. J. 307, 105–112 (2017)

    Article  Google Scholar 

  20. L. Li, J. Gong, C. Liu, Y. Tian, M. Han, Q. Wang, X. Hong, Q. Ding, W. Zhu, J. Bao, ACS Omega 2, 1089–1096 (2017)

    Article  Google Scholar 

  21. W. Sun, A. Hsu, R. Chen, J. Power Sources 196, 627–635 (2011)

    Article  Google Scholar 

  22. H.W. Nesbitt, D. Banerjee, Am. Miner. 83, 305–315 (1998)

    Article  Google Scholar 

  23. H. Fang, S. Zhang, X. Wu, W. Liu, B. Wen, Z. Du, T. Jiang, J. Power Sources 235, 95–104 (2013)

    Article  Google Scholar 

  24. S. Min, C. Zhao, Z. Zhang, K. Wang, G. Chen, X. Qian, Z. Guo, RSC Adv. 5, 62571–62576 (2015)

    Article  Google Scholar 

  25. T. Brousse, D. Bélanger, J.W. Long, J. Electrochem. Soc. 162(5), A5185-A5189 (2015)

    Article  Google Scholar 

  26. Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45(21), 5925–5950 (2016)

    Article  Google Scholar 

  27. A. Javaid, K.K.C. Ho, A. Bismarck, J.H.G. Steinke, M.S.P. Shaffer, E.S. Greenhalgh, J. Compos. Mater. 50, 2155–2163 (2016)

    Article  Google Scholar 

  28. Y. Xiao, L. Huang, Q. Zhang, S. Xu, Q. Chen, W. Shi, Appl. Phys. Lett. 107, 013906 (2015)

    Article  Google Scholar 

  29. W. Bi, Z. Hu, X. Li, C. Wu, J. Wu, Y. Wu, Y. Xie, Nano Res. 8, 193–200 (2015)

    Article  Google Scholar 

  30. K. Gao, Z. Shao, J. Li, X. Wang, X. Peng, W. Wang, F. Wang, J. Mater. Chem. A 1, 63–67 (2013)

    Article  Google Scholar 

  31. T. Chen, Y. Tang, Y. Qiao, Z. Liu, W. Guo, J. Song, S. Mu, S. Yu, Y. Zhao, F. Gao, Sci. Rep. 6, 23289 (2016)

    Article  Google Scholar 

  32. G.S. Gund, D.P. Dubal, N.R. Chodankar, J.Y. Cho, P. Gomez-Romero, C. Park, C.D. Lokhande, Sci. Rep. 5, 12454 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11104062), the Fundamental Research Funds for the Central Universities (Grant Nos. 2015B22313 and 2016B46014). Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences, Division of Materials Sciences & Engineering, under Contract No. DE-AC02-07CH11358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangfeng Gong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 701 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Gong, J., Tang, C. et al. Vertically-aligned Mn(OH)2 nanosheet films for flexible all-solid-state electrochemical supercapacitors. J Mater Sci: Mater Electron 28, 17533–17540 (2017). https://doi.org/10.1007/s10854-017-7689-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7689-5

Navigation