Skip to main content

Advertisement

Log in

Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ultra-fine nanoparticles of magnetite iron oxide (Fe3O4) were prepared through a poly(vinyl alcohol) (PVA) assisted cathodic electrosynthesis. According to this method, Fe3O4 was deposited on a stainless steel cathode form an aqueous electrolyte containing 0.005 M Fe(NO3)3/FeCl2 and 0.1 g/L PVA. The structural characterization of the electro-synthesized deposit through X-ray diffraction (XRD), field emission and transmission electron microscopies (FE-SEM and TEM) confirmed that the product was composed of pure magnetite spherical particles with average size of 5 nm. The surface area of the resulting Fe3O4 nanoparticles was determined to be 171.5 m2/g through Brunauer–Emmett–Teller (BET) gas-sorption measurements. The electrochemical performance of the prepared ultra-fine nanoparticles was evaluated using cyclic voltammetry(CV), continuous charge–discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The obtained electrochemical data showed that the prepared Fe3O4 nanoparticles had suitable charge storage ability with a specific capacitance of as high as 195.8 F g−1, and they maintain about 94% of their initial capacity after 3000 cycles at a current load of 0.5 A g−1. These data proved the suitability of the prepared nanoparticles for use in supercapacitors. Furthermore, this work provides a facile electrochemical route for the synthesis of ultra-fine iron oxide nanoparticles for application in the next generations of energy storage materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Yu, L. Tetard, L. Zhaia, J. Thomas, Energy Environ. Sci. 8, 702 (2015)

    Article  Google Scholar 

  2. X. Peng, L. Peng, C. Wu, Y. Xie, Chem. Soc. Rev. 433, 303 (2014)

    Google Scholar 

  3. M. Aghazadeh, M.R. Ganjali, J. Mater. Sci. (2017). doi:10.1007/s10854-011

    Google Scholar 

  4. H. Gholipour-Ranjbar, M.R. Ganjali, P. Norouzi, H.R. Naderi, J. Mater. Sci. Mater. Electron. 27, 10163(2016)

    Article  Google Scholar 

  5. M. Aghazadeh, A. Bahrami-Samani, D. Gharailou, M.G. Maragheh, M.R. Ganjali, P. Norouzi, J. Mater. Sci. 27, 11192 (2016)

    Google Scholar 

  6. M. Aghazadeh, R. Ahmadi, D. Gharailou, M.R. Ganjali, P. Norouzi, J. Mater. Sci. 27, 8623 (2016)

    Google Scholar 

  7. M. Aghazadeh, M.R. Ganjali, P. Norouzi, J. Mater. Sci. 27, 7707 (2016)

    Google Scholar 

  8. M. Aghazadeh, M.G. Maragheh, M.R. Ganjali, P. Norouzi, F. Faridbod, Appl. Surf. Sci. 364, 141 (2016)

    Article  Google Scholar 

  9. M. Aghazadeh, A. Rashidi, M.R. Ganjali, Int. J. Electrochem. Sci. 11, 11002 (2016)

    Article  Google Scholar 

  10. M. Aghazadeh, J. Mater. Sci. 28, 3108 (2017)

    Google Scholar 

  11. J. Talat Mehrabad, M. Aghazadeh, M.G. Maragheh, M.R. Ganjali, Mater. Lett. 184, 223 (2016)

    Article  Google Scholar 

  12. M. Aghazadeh, B. Sabour, M.R. Ganjali, S. Dalvand, Appl. Surf. Sci. 313, 581 (2016)

    Article  Google Scholar 

  13. V.D. Nithya, N. Sabari Arul, J. Power Sour. 327, 297 (2016)

    Article  Google Scholar 

  14. A.A. Yadav, J. Mater. Sci. 27, 12876 (2016)

    Google Scholar 

  15. L. O’Neill, C. Johnston, P.S. Grant, J. Power Sour. 274, 907 (2015)

    Article  Google Scholar 

  16. L. Wang, H. Ji, S. Wang, L. Kong, X. Jiang, G. Yang, Nanoscale 5, 3793 (2013)

    Article  Google Scholar 

  17. Q. Qu, S. Yang, X. Feng, Adv. Mater. 23, 5574 (2011)

    Article  Google Scholar 

  18. K. Wasifnski, M. Walkowiak, P. Połrolniczak, G. Lot, J. Power Sour. 293, 42 (2015)

    Article  Google Scholar 

  19. D. Guan, Z. Gao, W. Yang, J. Wang, Y. Yuan, B. Wang, M. Zhang, L. Liu, Mater. Sci. Eng. B 178, 736 (2013)

    Article  Google Scholar 

  20. Q. Ke, C. Tang, Y. Liu, H. Liu, J. Wan, Mater. Res. Expr. 1, 025015 (2014)

    Article  Google Scholar 

  21. B. Jaleh, A. Khalilipour, S. Habibi, M. Niyaifar, M. Nasrollahzadeh, J. Mater. Sci. 28, 4974 (2017)

    Google Scholar 

  22. A. Barani, M. Aghazadeh, M.R. Ganjali, B. Sabour, A.A.M. Barmi, S. Dalvand, Mater. Sci. Semicond. Process. 23, 85 (2014)

    Article  Google Scholar 

  23. M. Aghazadeh, A.A.M. Barmi, D. Gharailou, Appl. Surf. Sci. 283, 871 (2013)

    Article  Google Scholar 

  24. M. Aghazadeh, M. Ghaemi, B. Sabour, S. Dalvand, J. Solid State Electrochem. 18, 1569 (2014)

    Article  Google Scholar 

  25. M. Aghazadeh, A.N. Golikand, M. Ghaemi, Int. J. Hydrogen Energy 36, 8674 (2011)

    Article  Google Scholar 

  26. M. Aghazadeh, A. Rashidy, P. Norouzi, Int. J. Electrochem. Sci. 11, 11016 (2016)

    Article  Google Scholar 

  27. H.M. Kothari, E.A. Kulp, S.J. Limmer, P. Poizot, E.W. Bohannan, J.A. Switzer, J. Mater. Res. 21, 293 (2006)

    Article  Google Scholar 

  28. M. Aghazadeh, I. Karimzadeh, M.R. Ganjali, M. Mohebi Morad, Mater. Lett. 196, 392 (2017)

  29. I. Karimzadeh, H.R. Dizaji, M. Aghazadeh, J. Magn. Magn. Mater. 416, 81 (2016)

    Article  Google Scholar 

  30. I. Karimzadeh, M. Aghazadeh, M.R. Ganjali, Mater. Lett. 179, 5 (2016)

    Article  Google Scholar 

  31. M. Aghazadeh, M. Asadi, M.R. Ganjali, P. Norouzi, B. Sabour, M. Emamalizadeh, Thin Solid Films 634, 24 (2017)

  32. I. Karimzadeh, M. Aghazadeh, M.R. Ganjali, T. Dourudi, Curr. Nanosci. 13, 167 (2016)

    Article  Google Scholar 

  33. I. Karimzadeh, M. Aghazadeh, M.R. Ganjali, P. Norouzi, T. Doroudi, Mater. Lett. 189, 290 (2017)

    Article  Google Scholar 

  34. S.Y. Wang, K.C. Ho, S.L. Kuo, N.L. Wu, J. Electrochem. Soc. 153, A75 (2006)

    Article  Google Scholar 

  35. V.D. Nithya, N. Sabari Arul, J. Mater. Chem. A 4, 10767 (2016)

    Article  Google Scholar 

  36. J. Chen, K. Huang, S. Liu, Electrochim. Acta 55, 1 (2009)

    Article  Google Scholar 

  37. E. Mitchell, R.K. Gupta, K.M. Darkwa, D. Kumar, K. Ramasamy, B.K. Gupta, P. Kahol, New J. Chem. 38, 4344 (2014)

    Article  Google Scholar 

  38. S.C. Pang, W.H. Khoh, S.F. Chin, J. Mater. Sci. 45, 5598 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author thanks Iran National Science Foundation for supporting this work (Project No. 952341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Aghazadeh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest about publishing this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghazadeh, M., Karimzadeh, I. & Ganjali, M.R. Electrochemical evaluation of the performance of cathodically grown ultra-fine magnetite nanoparticles as electrode material for supercapacitor applications. J Mater Sci: Mater Electron 28, 13532–13539 (2017). https://doi.org/10.1007/s10854-017-7192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7192-z

Navigation