Skip to main content
Log in

Structural, spectral, quantum chemical and thermal studies on a new NLO crystal: guanidinium cinnamate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

New organic non-linear optical (NLO) single crystals of guanidinium cinnamate were crystallized by solvent evaporation solution growth technique and the crystal and molecular structure were determined by single crystal X-ray diffraction. The crystal packing is dominated by classical N–H···O hydrogen bonding interactions. Due to deficiency of acceptor atoms compared to the donor sites, two unusual ring R2 1(6) motifs are formed through two N–H···O hydrogen bonds. These ring motifs are further connected through chain C2 2(6) or C2 2(8) motifs along the b-axis of the unit cell. Further, these chain and ring motifs are cross-linked through another N–H···O hydrogen bond leading to classical ring R2 2(8) motif. These chain and ring motifs are interlinked with each other to form secondary ring R6 6(14)/R6 6(16) motifs. The molecular geometry of the asymmetric part of the unit cell was optimized theoretically by density functional theory using the B3LYP function with 6-311 + + G(d,p) basis set. The optimized molecular geometry and computed vibrational spectra are compared with experimental results which showed significant agreement. The intermolecular interactions of the title compound were analyzed by the Hirshfeld surfaces. The computed hyperpolarizability values showed that the compound is a good candidate for NLO applications. The chemical hardness, electro-negativity and chemical potential of the molecule were computed by HOMO–LUMO plot. The lower band gap of the frontier orbitals indicates the suitability of fabrication of the material for non-linear optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 1

Similar content being viewed by others

References

  1. T. Eicher, S. Hauptmann, The Chemistry of Heterocycles, Structure, Reactions, Synthesis and Applications, 2nd edn, (Wiley-VCH, New Jersy, 2003)

    Google Scholar 

  2. Y.A. Ivanenkov, K.V. Balakin, S.E. Tkachenko, Drugs R & D 9, 397–434 (2008)

    Article  Google Scholar 

  3. T. Nemec, Z. Machackova, K. Teubner, I. Cisarova, P. Vanek, Z. Micka, J. Solid State Chem. 177, 4655 (2004)

    Article  Google Scholar 

  4. G. Carter, D. Spichiger, P.L.W. Tregenna-Piggott, J. Chem. Phys. 122, 124511 (2005)

    Article  Google Scholar 

  5. M.J. Bushiri, C.J. Antony, M. Fleck, J. Raman Spectrosc. 39, 368 (2008)

    Article  Google Scholar 

  6. V. Siva Shankar, R. Siddeswaran, T. Bharthasarathi, P. Murugakoothan, J. Crst. Growth 311, 2709–2713 (2009)

    Article  Google Scholar 

  7. P.S. Pereira Silva, M. Ramos Silva, J.A. Paixao, A. Matos Beja, Acta Cryst. E 63, o2783 (2007)

    Article  Google Scholar 

  8. P.S. Pereira Silva, M. Ramos Silva, J.A. Paixao, A. Matos Beja, Acta Cryst. E 66, o524 (2010)

    Article  Google Scholar 

  9. D.C. Kleb, M. Schurmann, H. Preut, P. Bleckmann, Z. Kristallogr. New Cryst. Struct. 213, 581–582 (1998)

    Google Scholar 

  10. M. Drozd, D. Dudzic, A. Pietraszko, Spectrochim. Acta Part A 105, 135–148 (2013)

    Article  Google Scholar 

  11. M. Drozd, Spectrochim. Acta Part A 64, 73–86 (2006)

    Article  Google Scholar 

  12. M. Drozd, Spectrochim. Acta Part A 65, 1069–1086 (2006)

    Article  Google Scholar 

  13. A. Suvitha, P. Murugakoothan, Spectrochim. Acta Part A 86, 266–270 (2012)

    Article  Google Scholar 

  14. T. Arumanayagam, S. Ananth, P. Murugakoothan, Spectrochim. Acta Part A 97, 741–745 (2012)

    Article  Google Scholar 

  15. V. Siva Shankar, R. Siddeswaran, P. Murugakoothan, Mater. Chem. Phys. 130, 323–326 (2011)

    Article  Google Scholar 

  16. M.B. Talawar, R. Sivabalan, T. Mukundan, H. Muthurajan, A.K. Sikder, B.R. Gandhe, A.S. Rao, J. Hazard. Mater. 161, 589 (2009)

    Article  Google Scholar 

  17. D. Chakaraborty, S. Manogaran, Ind. J. Chem. A 33, 969–977 (1994)

    Google Scholar 

  18. R.J. Sension, B. Hudson, P.R. Callis, J. Phys. Chem. 94, 4015–4025 (1990)

    Article  Google Scholar 

  19. I. Nemec, Z. Machackova, K. Teubner, I. Cisarova, P. Vanek, Z. Micka, J. Solid State Chem. 177, 4655–4664 (2004)

    Article  Google Scholar 

  20. K. Russel Raj, P. Murugakoothan, J. Cryst. Growth 362, 130–134 (2013)

    Article  Google Scholar 

  21. A. Suvitha, P. Vivek, P. Murugakoothan, Optik 124, 3534–3538 (2013)

    Article  Google Scholar 

  22. G.M. Sheldrick, Acta Cryst C 71, 3–8 (2015)

    Article  Google Scholar 

  23. M.J. Frisch, G.W. Trucks, H.B. Schlegal, G.E. Scuseria, M.A. Robb, J.R. Cheesman, V.G. Zakrzewski, J.A. Montgomerg Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malich, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stetanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, GAUSSIAN 09, Revision A 11.4. (Gaussian Inc., Pittsburgh, PA, 2009)

    Google Scholar 

  24. H.B. Schlegel, J. Comput. Chem. 3, 214–218 (1982)

    Article  Google Scholar 

  25. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864–871 (1964)

    Article  Google Scholar 

  26. R. Dennington, T. Keith, J. Millam, GaussView Version 5. (Semichem Inc., Shawnee Mission KS, 2009)

    Google Scholar 

  27. S. Athimoolam, S. Natarajan, Acta Cryst. C 62, o612–o617 (2006)

    Article  Google Scholar 

  28. M. Suresh, S.A. Bahadur, S. Athimoolam, J. Mater. Sci. 27(5), 4578–4589 (2016)

    Google Scholar 

  29. M. Suresh, S.A. Bahadur, S. Athimoolam, J. Mater. Sci. 28(1), 661–672 (2017)

    Google Scholar 

  30. M.A. Spackman, D. Jayatilaka, Cryst. Eng. Comm. 11, 19–32 (2009)

    Article  Google Scholar 

  31. J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Acta Cryst. B 60, 627–668 (2004)

    Article  Google Scholar 

  32. M.A. Spackman, J.J. McKinnon, D. Jayatilaka, Cryst. Eng. Comm. 10, 377–388 (2008)

    Google Scholar 

  33. S. Suresh Kumar, S. Athimoolam, B. Sridhar, Spectrochim. Acta Part A 146, 204–213 (2015)

    Article  Google Scholar 

  34. G. Socrates, Infrared Characteristic Group Frequencies. (John Wiley, New York, 1980)

    Google Scholar 

  35. W.D. Kumler, J. Am. Chem. Soc. 76, 814–816 (1954)

    Article  Google Scholar 

  36. G. Varsanyi, Assignment for Vibrational Spectra of Seven Hundred Benzene Derivatives. (Academic Kiaclo, Budapest, 1–2, 1973)

    Google Scholar 

  37. A.W. Herlinger, T.V. Long, J. Am. Chem. Soc. 92, 6481–6486 (1970)

    Article  Google Scholar 

  38. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd edn, (Academic Press, New York, 1990)

    Google Scholar 

  39. L.J. Bellamy, The Infrared Spectra of Complex Molecules. (Chapman and Hall, London, 1975)

    Book  Google Scholar 

  40. F.R. Dollish, W.G. Fateley, Bentley Characteristic Raman Frequencies of Organic- Compounds. (Wiley, New York, 1973)

    Google Scholar 

  41. M.A. Palafox, Int. J. Quant. Chem. 77, 661–684 (2000)

    Article  Google Scholar 

  42. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, (John Wiley, New York, 1976)

    Google Scholar 

Download references

Acknowledgements

The authors VS and SAB are thankful to the Council of Scientific and Industrial Research [CSIR], New Delhi-110012 for the financial support (No. 03(1276)/13/EMR-ll).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Athimoolam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siva, V., Kumar, S.S., Shameem, A. et al. Structural, spectral, quantum chemical and thermal studies on a new NLO crystal: guanidinium cinnamate. J Mater Sci: Mater Electron 28, 12484–12496 (2017). https://doi.org/10.1007/s10854-017-7070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7070-8

Keywords

Navigation