Skip to main content
Log in

Highly sensitive, atmospheric pressure operatable sensor based on Au nanoclusters decorated TiO2@Au heterojunction nanorods for trace level NO2 gas detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A controlled synthetic strategy is established for the development of TiO2@Au heterojunction nanorods using a facile wet-chemical method for the detection of NO2 gas under atmospheric pressure conditions. Structural studies reveal the existence of metastable anatase phase along with thermodynamically stable rutile phase with high degree of crystallinity. The structural analysis divulges the uniform surface anchoring of Au nanoclusters onto mono-dispersed TiO2 nanorods introducing interfacial metal–semiconductor heterojunctions. TiO2@Au heterojunction nanorods exhibited excellent sensor performance towards trace level exposure of NO2 gas. Owing to the interfacial electron transfer process at the heterojunction the optimum operating temperature of TiO2@Au heterojunction nanorods determined to be 250 °C, which is much less as compared to pristine TiO2 gas sensors (400 °C). Sensor response was found to be linear for the trace level concentration range of 0.5–5 ppm with lowest detection limit as 500 ppb. The TiO2@Au heterojunction nanorods exhibited higher sensitivity at atmospheric pressure conditions compared to vacuum conditions because of the changes in surface O2 adsorption properties of the heterojunction material at different oxygen partial pressure and existence of mixed phases in TiO2 nanorods. The superior gas sensor performance of the material under atmospheric pressure conditions point towards their potential for real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I. Alessandri, E. Comini, E. Bontempi, G. Faglia, L.E. Depero, G. Sberveglieri, Cr- inserted TiO2 thin films for chemical gas sensors. Sens. Actuators B 128, 312–319 (2007)

    Article  Google Scholar 

  2. G. Korotcenkov, B.K. Cho, Engineering approaches to improvement of conductometric gas sensor parameters. Part 2: decrease of dissipated (consumable) power and improvement stability and reliability. Sens. Actuators B 198, 316–341 (2014)

    Article  Google Scholar 

  3. X. Chen, C.K.Y. Wong, C.A. Yuan, G. Zhang, Nanowire-based gas sensors. Sens. Actuators B 177, 178–195 (2013)

    Article  Google Scholar 

  4. B. Saruhan, A. Yüce, Y. Gönüllü, K. Kelm, Effect of Al doping on NO2 gas sensing of TiO2 at elevated temperatures. Sens. Actuators B 187, 586–597 (2013)

    Article  Google Scholar 

  5. H. Wang, Z. Guo, S. Wang, W. Liu, One-dimensional titania nanostructures: synthesis and applications in dye-sensitized solar cells. Thin Solid Films 558, 1–19 (2014)

    Article  Google Scholar 

  6. N.S. Ramgir, Y. Yang, M. Zacharias, Nanowire-based sensors. Small 6, 1705–1722 (2010)

    Article  Google Scholar 

  7. E. Şennik, U. Soysal, Z.Z. Öztürk, Pd loaded spider-web TiO2 nanowires: fabrication, characterization and gas sensing properties. Sens. Actuators B 199, 424–432 (2014)

    Article  Google Scholar 

  8. A.M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, Cr-doped TiO2 gas sensor for exhaust NO2 monitoring. Sens. Actuators B 93, 509–518 (2003)

    Article  Google Scholar 

  9. Y.J. Choi, Z. Seeley, A. Bandyopadhyay, S. Bose, S.A. Akbar, Aluminum-doped TiO2 nano-powders for gas sensors. Sens. Actuators B 124, 111–117 (2007)

    Article  Google Scholar 

  10. G.B. Song, J.K. Liang, F.S. Liu, T.J. Peng, G.H. Rao, Preparation and phase transformation of anatase–rutile crystals in metal doped TiO2/muscovite nanocomposites. Thin Solid Films 491, 110–116 (2005)

    Article  Google Scholar 

  11. X. Li, R. Ramasamy, P.K. Dutta, Study of the resistance behaviour of anatase and rutile thick films towards carbon monoxide and oxygen at high temperatures and possibilities for sensing applications. Sens. Actuators B 143, 308–315 (2009)

    Article  Google Scholar 

  12. N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. Asia 7, 63–75 (2003)

    Article  Google Scholar 

  13. H. Liu, W. Yang, M. Wang, L. Xiao, S. Liu, Fabrication of lotus-like Au@TiO2 nanocomposites with enhanced gas-sensing properties. Sens. Actuators B 236, 490–498 (2016)

    Article  Google Scholar 

  14. D.T. Thu, H.T. Hien, D.T.A. Thu, P.Q. Ngan, G.H. Thai, C.V. Tuan, T. Trung, H.T. Giang, Schottky contacts of (Au, Pt)/nanotube-titanates for fast response to NO2 gas at room temperature. Sens. Actuators B 244, 941–948 (2017)

    Article  Google Scholar 

  15. Q. Zhang, L. Gao, Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: insights from rutile TiO2. Langmuir 19, 967–971 (2002)

    Article  Google Scholar 

  16. M.M. Khan, S.A. Ansari, J. Lee, M.H. Cho, Enhanced optical, visible light catalytic and electrochemical properties of Au@TiO2 nanocomposites. J. Ind. Eng. Chem. 19, 1845–1850 (2013)

    Article  Google Scholar 

  17. S. Abdulla, T.L. Mathew, B. Pullithadathil, Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens. Actuators B 221, 1523–1534 (2015)

    Article  Google Scholar 

  18. X. Pan, Y.-J. Xu, Efficient thermal- and photzocatalyst of Pd nanoparticles on TiO2 achieved by an oxygen vacancies promoted synthesis strategy. ACS Appl. Mater. Interfaces 6, 1879–1886 (2014)

    Article  Google Scholar 

  19. U. Balachandran, N.G. Eror, Raman spectra of titanium dioxide. J. Solid State Chem. 42, 276–282 (1982)

    Article  Google Scholar 

  20. C.Y. Xu, P.X. Zhang, L. Yan, Blue shift of Raman peak from coated TiO2 nanoparticles. J. Raman Spectrosc. 32, 862–865 (2001)

    Article  Google Scholar 

  21. H.C. Choi, Y.M. Jung, S.B. Kim, Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 37, 33–38 (2005)

    Article  Google Scholar 

  22. W. Su, J. Zhang, Z. Feng, T. Chen, P. Ying, C. Li, Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J. Phys. Chem. C 112, 7710–7716 (2008)

    Article  Google Scholar 

  23. X.Z. Li, F.B. Li, Study of Au/Au3+-TiO2 Photocatalysts toward visible photooxidation for water and wastewater treatment. Environ Sci Technol 35, 2381–2387 (2001)

    Article  Google Scholar 

  24. J. Esmaeilzadeh, E. Marzbanrad, C. Zamani, B. Raissi, Fabrication of undoped-TiO2 nanostructure-based NO2 high temperature gas sensor using low frequency AC electrophoretic deposition method. Sens. Actuators B 161, 401–405 (2012)

    Article  Google Scholar 

  25. A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, M. Moskovits, Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667–673 (2005)

    Article  Google Scholar 

  26. N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B 121, 18–35 (2007)

    Article  Google Scholar 

  27. A. Teleki, S.E. Pratsinis, K. Kalyanasundaram, P.I. Gouma, Sensing of organic vapors by flame-made TiO2 nanoparticles. Sens. Actuators, B 119, 683–690 (2006)

    Article  Google Scholar 

  28. P. Knauth, H.L. Tuller, Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide. J. Appl. Phys. 85, 897–902 (1999)

    Article  Google Scholar 

  29. A. Tricoli, M. Righettoni, A. Teleki, Semiconductor gas sensors: dry synthesis and application. Angew. Chem. Int. Ed. 49, 7632–7659 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by IGCAR-PSGCT project (IGCAR-PSG/213) and authors wish to acknowledge the facilities and support provided by PSG Sons and Charities, Coimbatore and Materials Science Group, IGCAR, Kalpakkam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biji Pullithadathil.

Ethics declarations

Conflict of intrest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1219 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponnuvelu, D.V., Pullithadathil, B., Prasad, A.K. et al. Highly sensitive, atmospheric pressure operatable sensor based on Au nanoclusters decorated TiO2@Au heterojunction nanorods for trace level NO2 gas detection. J Mater Sci: Mater Electron 28, 9738–9748 (2017). https://doi.org/10.1007/s10854-017-6725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6725-9

Keywords

Navigation