Skip to main content
Log in

A situ hydrothermal synthesis of a two-dimensional MoS2/TiO2 heterostructure composite with exposed (001) facets and its visible-light photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) MoS2/TiO2 heterostructure composites with exposed (001) facets (MT-001) were fabricated through a situ hydrothermal method. The microstructure and composition of the composite material were characterized by XRD, TEM, and XPS. TEM results showed that the composite consisted of well-defined sheet-shaped structures with a rectangular outline and a length of approximately 80–140 nm. XPS results demonstrated that the MoS2 coated on the surface of TiO2 nanosheets with (001) facets (T-001). Further investigation of UV–Vis diffuse reflectance spectra revealed that light absorption had the strongest visible light range after T-001 compounded with MoS2. The photocatalytic activity of the composites were estimated by the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Compared with T-001, The MT-001 exhibited better photocatalytic activity in MB degradation because of the formation of nano-heterojunction, which originated from intimate interfacial contacts as well as the suitably matching conduction and valance levels between MoS2 and T-001. When the MoS2 loading contents of MT-001 reached 5 wt% (5 wt% MT-001), the corresponding MB degradation rate was 83.26% under visible-light irradiation for 30 min; this value is approximately 1.44 times that of T-001. The possible visible-light photocatalytic mechanism was also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211 (2011)

    Article  Google Scholar 

  2. R. Dhabbe, A. Kadam, P. Korake, M. Kokate, P. Waghmare, K. Garadkar, J. Mater. Sci. Mater. Electron. 26, 554 (2014)

    Article  Google Scholar 

  3. Y. You, S. Zhang, L. Wan, D. Xu, Appl. Surf. Sci. 258, 3469–3474 (2012)

    Article  Google Scholar 

  4. K. Zhou, Y. Li, Angew. Chem. Int. Ed. 51, 602 (2012)

    Article  Google Scholar 

  5. Y. Chen, T. Yuan, F. Wang, J. Hu, W. Tu, J. Mater. Sci. Mater. Electron. 27, 9983–9988 (2016)

    Article  Google Scholar 

  6. Y. Du, D. Tang, G. Zhang, X. Wu, Chin. J. Catal. 36, 2219–2228 (2015)

    Article  Google Scholar 

  7. Z. Fan, F. Meng, J. Gong, H. Li, Z. Ding, B. Ding, J. Mater. Sci. Mater. Electron. 27, 11866–11872 (2016)

    Article  Google Scholar 

  8. J. Low, B. Cheng, J. Yu, Appl. Surf. Sci. 392, 658–686 (2017)

    Article  Google Scholar 

  9. D. Wang, Y. Xu, F. Sun, Q. Zhang, P. Wang, X. Wang, Appl. Surf. Sci. 377, 221–227 (2016)

    Article  Google Scholar 

  10. G. Liu, H.G. Yang, J. Pan, Y.Q. Yang, G.Q. Lu, H.M. Cheng, Chem. Rev. 114, 9559 (2014)

    Article  Google Scholar 

  11. X.-L. Cheng, M. Hu, R. Huang, J.-S. Jiang, ACS Appl. Mater. Interfaces 6, 19176 (2014)

    Article  Google Scholar 

  12. V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, S.C. Pillai, J. Photochem. Photobiol. C 25, 1–29 (2015)

    Article  Google Scholar 

  13. C.P. Sajan, S. Wageh, A.A. Al-Ghamdi, J. Yu, S. Cao, Nano Res. 9, 3 (2015)

    Article  Google Scholar 

  14. X. Yue, J. Zhang, F. Yan, X. Wang, F. Huang, Appl. Surf. Sci. 319, 68 (2014)

    Article  Google Scholar 

  15. A. Meng, J. Zhang, D. Xu, B. Cheng, J. Yu, Appl. Catal. B Environ. 198, 286–294 (2016)

    Article  Google Scholar 

  16. M. G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, D. Bahena, V. Briois, C. Colbeau-Justin, J. L. Rodríguez-López, H. Remita, J. Phys. Chem. C 120, 5143 (2016)

    Article  Google Scholar 

  17. L. Nie, J. Yu, X. Li, B. Cheng, G. Liu, M. Jaroniec, Environ. Sci. Technol. 47, 2777 (2013)

    Article  Google Scholar 

  18. L. Nie, P. Zhou, J. Yu, M. Jaroniec, J. Mol. Catal. A Chem. 390, 7 (2014)

    Article  Google Scholar 

  19. T.J. Macdonald, D.D. Tune, M.R. Dewi, C.T. Gibson, J.G. Shapter, T. Nann, ChemSusChem 8, 3351 (2015)

    Article  Google Scholar 

  20. C. Xu, J. Wu, U.V. Desai, D. Gao, Nano Lett. 12, 2420 (2012)

    Article  Google Scholar 

  21. S. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27, 2150 (2015)

    Article  Google Scholar 

  22. L. Gu, J. Wang, H. Cheng, Y. Zhao, L. Liu, X. Han, ACS Appl. Mater. Interfaces 5, 3085 (2013)

    Article  Google Scholar 

  23. Q. Huang, S. Tian, D. Zeng, X. Wang, W. Song, Y. Li, W. Xiao, C. Xie, ACS Catal. 3, 1477 (2013)

    Article  Google Scholar 

  24. X.X. Zou, G.D. Li, Y.N. Wang, J. Zhao, C. Yan, M.Y. Guo, L. Li, J.S. Chen, Chem. Commun. 47, 1066 (2011)

    Article  Google Scholar 

  25. W. Zhang, X. Xiao, L. Zheng, C. Wan, Appl. Surf. Sci. 358, 468–478 (2015)

    Article  Google Scholar 

  26. Y. Zhou, Y. Wu, Y. Li, Y. Liu, L. Yang, L. Wang, H. Liu, D. Li, Q. Luo, Ceram. Int. 42, 12482 (2016)

    Article  Google Scholar 

  27. J.-W. Jiang, Front. Phys. 10, 287 (2015)

    Article  Google Scholar 

  28. S. Li, X. Gu, Y. Zhao, Y. Qiang, S. Zhang, M. Sui, J. Mater. Sci. Mater. Electron. 27, 386 (2015)

    Article  Google Scholar 

  29. D. Li, J. Li, C. Han, X. Zhao, H. Chu, W. Lei, X. Liu, Nano 11, 1650114 (2016)

    Article  Google Scholar 

  30. X. Wang, R. Yu, K. Wang, G. Yang, H. Yu, Chin. J Catal. 36, 211–2218 (2015)

    Google Scholar 

  31. W. Zhang, X. Xiao, Y. Li, X. Zeng, L. Zheng, C. Wan, Appl. Surf. Sci. 389, 496–506 (2016)

    Article  Google Scholar 

  32. Y.-H. Tan, K. Yu, J.-Z. Li, H. Fu, Z.-Q. Zhu, J. Appl. Phys. 116, 064305 (2014)

    Article  Google Scholar 

  33. Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 133, 7296 (2011)

    Article  Google Scholar 

  34. Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134, 6575 (2012)

    Article  Google Scholar 

  35. W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Small 9, 140 (2013)

    Article  Google Scholar 

  36. W. Zhang, X. Xiao, L. Zheng, C. Wan, Can. J. Chem. Eng. 93, 1594 (2015)

    Article  Google Scholar 

  37. Y. Tian, L. Ge, K. Wang, Y. Chai, Mater. Charact. 87, 70 (2014)

    Article  Google Scholar 

  38. G. Dai, S. Liu, Y. Liang, H. Liu, Z. Zhong, J. Mol. Catal. A Chem. 368–369, 38 (2013)

    Article  Google Scholar 

  39. X.L. Yin, L.L. Li, W.J. Jiang, Y. Zhang, X. Zhang, L.J. Wan, J.S. Hu, ACS Appl. Mater. Interfaces 8, 15258 (2016)

    Article  Google Scholar 

  40. Y. Liu, Y.-X. Yu, W.-D. Zhang, J. Phy. Chem. C 117, 12949 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21671026), Scientific Research Fund of Hunan Provincial Education Department (15C0117), Science and Technology Project of Changsha (K1407007-11) and Hunan Collaborative Innovation Center of Environmental and Energy Photocatalysis. The authors are also grateful to the aid provided by the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Zhou or Jinbo Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhang, S., Zhou, Y. et al. A situ hydrothermal synthesis of a two-dimensional MoS2/TiO2 heterostructure composite with exposed (001) facets and its visible-light photocatalytic activity. J Mater Sci: Mater Electron 28, 9003–9010 (2017). https://doi.org/10.1007/s10854-017-6631-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6631-1

Keywords

Navigation