Skip to main content
Log in

Microwave dielectric properties of Na0.5Sm0.5TiO3-based ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of calcining and sintering conditions on the microwave dielectric properties of Na0.5Sm0.5TiO3 (NST) solid solutions were investigated. The results showed that, after being calcined at 1100 °C for 2 h, the proposed NST system sintered at 1350 °C for 4 h exhibited a good microwave dielectric properties. Additionally, the phase assemblages, crystal structures, microstructures and microwave dielectric properties of the Na0.5Sm0.5[Ti1−x (Al0.5Ta0.5) x ]O3 (NSTATx, 0.1 ≤ x ≤ 0.3) and (1 − x)Na0.5Sm0.5TiO3xSm(Mg0.5Ti0.5)O3 (NST–SMTx, 0.1 ≤ x ≤ 0.4) ceramics were also investigated in this work. The X-ray diffractometer results revealed that a tilted orthorhombic perovskite structure in space group Pnma was refined in the NSTATx ceramics, while the Ti7O13 phase, Sm2Ti2O7 phase, and some unknown phase were detected gradually in NST–SMTx ceramics with increasing x value. Moreover, for the NSTATx solid solutions, a decreasing permittivity (ε r) and a significant drop in quality factor (Q × f) were strongly correlated with ionic polarizability and grain sizes, respectively. On the other hand, the ε r and Q × f values of the NST–SMTx ceramics were strongly depended on the composition and phase assemblages. Furthermore, the temperature coefficient of the resonant frequency (τ f ) of the present ceramic systems could be adjusted by the changed tilting of oxygen octahedra. An optimized microwave dielectric properties with ε r ~ 59.4, Q × f ~ 22,200 GHz (at 4.06 GHz) and τ f  ~ 6.1 ppm/°C can be obtained in the NST–SMTx (x = 0.3) specimen sintered at 1450 °C for 4 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Kajfezz, P. Guillon, Dielectric Resonators (Noble Publishing Corporation, Tucker, 1998)

    Google Scholar 

  2. H. Zheng, G.D.C. de Gyorgyfalva, I.M. Reaney, Microstructure and microwave properties of CaTiO3–LaGaO3 solid solutions. J. Mater. Sci. 40, 5207–5214 (2005)

    Article  Google Scholar 

  3. P.L. Wise, I.M. Reaney, W.E. Lee et al., Structure microwave property relations in (Sr x Ca1−x ) n−1Ti n O3n−1. J. Eur. Ceram. Soc. 21, 1723–1726 (2001)

    Article  Google Scholar 

  4. Y. Wu, J.J. Bian, C. Zhao et al., Improvement of dielectric loss of Ba0.75Sr0.25TiO3 tunable material by La0.5Na0.5TiO3 addition. J. Mater. Sci. Mater. Electron. 26, 90–97 (2015)

    Article  Google Scholar 

  5. H.J. Kim, S. Kucheiko, S.J. Yoon et al., Microwave dielectrics in the (La1/2Na1/2)TiO3–Ca(Fe1/2Nb1/2)O3 system. J. Am. Ceram. Soc. 80, 1316–1318 (1997)

    Article  Google Scholar 

  6. M.H. Kim, S. Nahm, C.H. Choi et al., Dielectric properties of (1 − x)NdGaO3xCaTiO3 solid solution at microwave frequencies. Jpn. J. Appl. Phys. 41, 717–721 (2002)

    Article  Google Scholar 

  7. J.M. Li, Y.X. Han, T. Qiu et al., Effect of bond valence on microwave dielectric properties of (1 − x)CaTiO3x(Li0.5La0.5)TiO3 ceramics. Mater. Res. Bull. 47, 2375–2379 (2012)

    Article  Google Scholar 

  8. T. Takahashi, First-principles investigation of the phase stability for Ba(B1/32+B2/35+)O3 microwave dielectrics with the complex perovskite structure. Jpn. J. Appl. Phys. 39, 5637–5641 (2000)

    Article  Google Scholar 

  9. H. Kagata, J. Kato, K. Nishimoto et al., Dielectric properties of Pb-based perovskite substituted by Ti for B-site at microwave frequencies. Jpn. J. Appl. Phys. 32, 4332–4334 (1993)

    Article  Google Scholar 

  10. B. Hakki, P. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory Tech. MTT-8, 402–410 (1960)

    Article  Google Scholar 

  11. W. Courtney, Analysis and evaluation of a method of measuring complex permittivity and permeability of microwave materials. IEEE Trans. Microw. Theory Tech. MTT-18, 476–485 (1970)

    Article  Google Scholar 

  12. T. Nishikawa, K. Wakino, H. Tamura et al., Precise measurement method for temperature coefficient of microwave dielectric resonator material. IEEE. MTT-S. Int. Microw. Symp. Digest 3, 277–280 (1987)

    Google Scholar 

  13. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  14. C.H. Hsun, S.H. Tsai, Dielectric characteristics of Sr substitution on Ca0.4Sm0.4TiO3 ceramics at microwave frequency. Ceram. Int. 40, 10111–10114 (2014)

    Article  Google Scholar 

  15. F. Zhao, Z.X. Yue, Y.Z. Lin et al., Phase relation and microwave dielectric properties of xCaTiO3–(1 − x)TiO2–3ZnTiO3 multiphase ceramics. Ceram. Int. 33, 895–900 (2007)

    Article  Google Scholar 

  16. E.S. Kim, B.S. Chun, D.H. Kang, Effects of structural characteristics on microwave dielectric properties of (1 − x)Ca0.85Nd0.1TiO3xLnAlO3 (Ln = Sm, Er and Dy) ceramics. J. Eur. Ceram. Soc. 27, 3005–3010 (2007)

    Article  Google Scholar 

  17. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    Article  Google Scholar 

  18. J.M. Li, T. Qiu, Microwave dielectric properties of (1 − x)Ca0.6La0.267TiO3xCa(Sm0.5Nb0.5)O3 ceramics. Ceram. Int. 38, 4331–4335 (2012)

    Article  Google Scholar 

  19. F. Liu, C.L. Yuan, X.Y. Liu et al., Effects of structural characteristics on microwave dielectric properties of (Sr0.2Ca0.488Nd0.208)Ti1−x Ga4x/3O3 ceramics. Mater. Res. Bull. 70, 678–683 (2015)

    Article  Google Scholar 

  20. L.C. Yao, T. Qiu, W. Wan et al., Microstructure and microwave dielectric properties of xSm(Mg0.5Ti0.5)O3–(1 − x)Ca0.8Sr0.2TiO3 ceramics. J. Mater. Sci. Mater. Electron. 25, 0957–4522 (2014)

    Article  Google Scholar 

  21. C.H. Hsun, C.H. Chang, A temperature-stable and high-Q microwave dielectric ceramic of the MgTiO3−(Ca0.8Sr0.2)(Zr0.1Ti0.9)O3 system. Ceram. Int. 41, 6965–6969 (2015)

    Article  Google Scholar 

  22. J.J. Qu, F. Liu, X. Wei et al., New dielectric material systems of Sr x Nd2(1−x)/3TiO3 perovskites-like at microwave frequencies. Mater. Chem. Phys. 173, 309–316 (2016)

    Article  Google Scholar 

  23. N. Santha, I.N. Jawahar, P. Mohanan et al., Microwave dielectric properties of (1 − x)CaTiO3xSm(Mg1/2Ti1/2)O3 ceramics. Mater. Lett. 54, 318–322 (2002)

    Article  Google Scholar 

  24. M.Z. Hua, J. Qian, Structure evolution and microwave dielectric response of (Ca0.5+x Sr0.5−x )[(Al0.5Nb0.5)0.5Ti0.5]O3 solid solutions. Curr. Appl. Phys. 14, 46–52 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports of the National Natural Science Foundation of China (Grant No. 11464006), and the Middle-aged and Young Teachers of the College and/or Universities for Basic Ability Promotion Project in Guangxi of China (Grant No. KY2016YB534) are gratefully acknowledged by the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Liu or Changlai Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Qu, J., Yuan, C. et al. Microwave dielectric properties of Na0.5Sm0.5TiO3-based ceramics. J Mater Sci: Mater Electron 28, 3052–3059 (2017). https://doi.org/10.1007/s10854-016-5892-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5892-4

Keywords

Navigation