Skip to main content
Log in

N-Lauroylsarcosine capped silver nanoparticle based inks for flexible electronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver nanoparticles stabilized by an amino and fatty acid (C12) derivative—n-lauroylsarcosine with the average size of 8.4 nm have been obtained via the reduction of the silver nitrate with hydrazine in o-xylene at room temperature. The synthesized silver nanoparticles were investigated by transmission electron microscopy, powder X-ray diffraction, UV–Vis- and IR-spectroscopy. Thermal decomposition and removal of the capping agent from the surface of the nanoparticles have been studied by thermogravimetric analysis. It was determined that n-lauroylsarcosine is removed from the surface of the nanoparticles in two stages at a temperature range of 110–210 °C. Ink consisting of the silver nanoparticles capped with n-nauroylsarcosine has been prepared in o-xylene. Its physical properties and stability have been studied. Silver layers were formed by spin coating the developed ink on a polyimide substrate. The structure and electrical properties of the conductive films obtained at different curing temperatures have been studied. It was found that, after annealing at various temperatures in the range of 100–250 °C, the deposited layers have the different structures, which determine the electrical properties. In the case of the n-lauroylsarcosine capped silver nanoparticles, low resistivity of the film (<10 µΩ × cm) is achieved at lower temperatures (130–150 °C) as compared to that reported earlier for nanoparticles stabilized by fatty acids with the similar carbon chain lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Adv. Mater. 22, 673 (2010)

    Article  Google Scholar 

  2. E. Tekin, P.J. Smith, U.S. Schubert, Soft Matter 4, 703 (2008)

    Article  Google Scholar 

  3. Y. Aleeva, B. Pignataro, J. Mater. Chem. C 2, 6436 (2014)

    Article  Google Scholar 

  4. A. Kamyshny, J. Steinke, S. Magdassi, Open Appl. Phys. J. 4, 19 (2011)

    Article  Google Scholar 

  5. T.Y. Dong, W.T. Chen, C.W. Wang, C.P. Chen, C.N. Chen, M.C. Lin, J.M. Song, I.G. Chen, T.H. Kao, Phys. Chem. Chem. Phys. 11, 6269 (2009)

    Article  Google Scholar 

  6. A.L. Dearden, P.J. Smith, D.-Y. Shin, N. Reis, B. Derby, P. O’Brien, Macromol. Rapid Commun. 26, 315 (2005)

    Article  Google Scholar 

  7. Q. Huang, W. Shen, Q. Xu, R. Tan, W. Song, Mater. Chem. Phys. 147, 550 (2014)

    Article  Google Scholar 

  8. D. Kim, J. Moon, Electrochem. Solid State Lett. 8, J30 (2005)

    Article  Google Scholar 

  9. K.J. Lee, B.H. Jun, T.H. Kim, J. Joung, Nanotechnology 17, 2424 (2006)

    Article  Google Scholar 

  10. J.J. Lee, J.C. Park, M.H. Kim, T.S. Chang, S.T. Kim, S.M. Koo, N.C. You, S.J. Lee, J. Ceram. Process. Res. 8, 219 (2007)

    Google Scholar 

  11. S. Magdassi, A. Bassa, Y. Vinetsky, A. Kamyshny, Chem. Mater. 15, 2208 (2003)

    Article  Google Scholar 

  12. L. Mo, D. Liu, W. Li, L. Li, L. Wang, X. Zhou, Appl. Surf. Sci. 257, 5746 (2011)

    Article  Google Scholar 

  13. I.K. Shim, Y.I. Lee, K.J. Lee, J. Joung, Mater. Chem. Phys. 110, 316 (2008)

    Article  Google Scholar 

  14. X. Yang, W. He, S. Wang, G. Zhou, Y. Tang, J. Yang, J. Mater. Sci.: Mater. Electron. 23, 1980 (2012)

    Google Scholar 

  15. A.I. Titkov, O.G. Bukhanets, R.M. Gadirov, Y.M. Yukhin, N.Z. Lyakhov, Inorg. Mater.: Appl. Res. 6(4), 75 (2015)

    Google Scholar 

  16. W. Yang, C. Liu, Z. Zhang, Y. Liu, S. Nie, J. Mater. Sci.: Mater. Electron. 24, 628 (2013)

    Google Scholar 

  17. A. Kamyshny, S. Magdassi, Small 10, 3515 (2014)

    Article  Google Scholar 

  18. Y.A. Krutyakov, A.A. Kudrinskiy, A.Y. Olenin, G.V. Lisichkin, Russ. J. Chem. Rev. 77, 233 (2008)

    Article  Google Scholar 

  19. J. Niittynen, R. Abbel, M. Mäntysalo, J. Perelaer, U.S. Schubert, D. Lupo, Thin Solid Films 556, 452 (2014)

    Article  Google Scholar 

  20. H.-H. Lee, K.-S. Chou, K.-C. Huang, Nanotechnology 16, 2436 (2005)

    Article  Google Scholar 

  21. K. Ankireddy, S. Vunnam, J. Kellar, W. Cross, J. Mater. Chem. C 1, 572 (2013)

    Article  Google Scholar 

  22. M. Yamamoto, Y. Kashiwagi, M. Nakamoto, Langmuir 22, 8581 (2006)

    Article  Google Scholar 

  23. Y. Dong, X. Li, S. Liu, Q. Zhu, J.-G. Li, X. Sun, Thin Solid Films 589, 381 (2015)

    Article  Google Scholar 

  24. S.F. Jahn, T. Blaudeck, R.R. Baumann, A. Jakob, P. Ecorchard, T. Rüffer, H. Lang, P. Schmidt, Chem. Mater. 22, 3067 (2010)

    Article  Google Scholar 

  25. X.L. Nie, H. Wang, J. Zou, Appl. Surf. Sci. 261, 554 (2012)

    Article  Google Scholar 

  26. J.T. Wu, S.L.C. Hsu, M.H. Tsai, W.S. Hwang, J. Phys. Chem. C 115, 10940 (2011)

    Article  Google Scholar 

  27. D. Adner, F.M. Wolf, S. Möckel, J. Perelaer, U.S. Schubert, H. Lang, Thin Solid Films 565, 143 (2014)

    Article  Google Scholar 

  28. M. Ash, I. Ash, Handbook of Green Chemicals, 2nd edn. (Endicott, Synapse Information Resources, 2004), p. 876

    Google Scholar 

  29. Y.-C. Kim, J.-H. Park, P.J. Ludovice, M.R. Prausnitz, Int. J. Pharm. 352, 129 (2008)

    Article  Google Scholar 

  30. G.J.M. Redziniak, J.F. Tranchant, J. Soc. Cosmet. Chem. 43, 113 (1992)

    Google Scholar 

  31. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  32. K.J. Lee, Y.I. Lee, I.K. Shim, J. Joung, Y.S. Oh, J. Colloid Interface Sci. 304, 92 (2006)

    Article  Google Scholar 

  33. G. Socrates, Infrared Characteristic Group Frequencies: Tables and Charts, 2nd edn. (Wiley, New York, 1994), pp. 80–120

    Google Scholar 

  34. G.B. Deacon, R.J. Phillips, Coord. Chem. Rev. 33, 227 (1980)

    Article  Google Scholar 

  35. K. Ankireddy, M. Iskander, S. Vunnam, D.E. Anagnostou, J. Kellar, W. Cross, J. Appl. Phys. 114, 124303 (2013)

    Article  Google Scholar 

  36. D.Q. Vo, E.W. Shin, J.-S. Kim, S. Kim, Langmuir 26, 17435 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Science Foundation, Research Project No. 15-13-00113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Titkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Titkov, A.I., Bulina, N.V., Ulihin, A.S. et al. N-Lauroylsarcosine capped silver nanoparticle based inks for flexible electronics. J Mater Sci: Mater Electron 28, 2029–2036 (2017). https://doi.org/10.1007/s10854-016-5762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5762-0

Keywords

Navigation