Skip to main content
Log in

(K0.5Na0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3–SrZrO3 ceramics with good fatigue-resistance and temperature-stable piezoelectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x)(K0.5Na0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3xSrZrO3 (KNLNST–xSZ) (x = 0.000, 0.005, 0.010 and 0.015) lead-free ceramics were prepared by conventional solid-state sintering method. Crystal structure was determined using X-ray diffraction. The microstructure of the ceramics was observed by field emission electron microscope. The ceramics possessed a tetragonal perovsktie structure at room temperature without impurity phase. The average grain size was found to increase with increasing SZ. Meanwhile, the grain size distribution became much broader. According to the impedance analysis, the movements of oxygen vacancies played an important role in the conduction behavior at higher temperatures. The γ value increased from 1.18 for x = 0.000 to 1.31 for x = 0.010, implying that the characteristics of KNLNST–xSZ ceramics transferred from ferroelectric to more relaxor-like with increasing SZ content. Accordingly, the temperature stability and fatigue behavior of the modified ceramics were significantly improved, demonstrating that these materials had excellent potential for demanding high cycle and high temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Tian, B. Yao, P. Tan, Z.X. Zhou, G. Shi, D.W. Gong, R. Zhang, Appl. Phys. Lett. 106, 102903 (2015)

    Article  Google Scholar 

  2. L.M. Zheng, X.J. Yi, S.T. Zhang, W.H. Jiang, B. Yang, R. Zhang, W.W. Cao, Appl. Phys. Lett. 103, 122905 (2013)

    Article  Google Scholar 

  3. L.M. Zheng, X.Q. Huo, R. Wang, J.J. Wang, W.H. Jiang, W.W. Cao, Cryst. Eng. Comm. 15, 7718 (2013)

    Article  Google Scholar 

  4. H. Tian, C.P. Hu, X.D. Meng, P. Tan, Z.X. Zhou, J. Li, B. Yang, Cryst. Growth Des. 15, 1180 (2015)

    Article  Google Scholar 

  5. H. Tian, C.P. Hu, Q.Z. Chen, Z.X. Zhou, Mater. Lett. 68, 14 (2012)

    Article  Google Scholar 

  6. H. Tian, P. Tan, X.D. Meng, C.P. Hu, B. Yao, G. Shi, Z.X. Zhou, J. Mater. Chem. C 3, 10968 (2015)

    Article  Google Scholar 

  7. L. Liu, Y. Huang, Y. Li, L. Fang, H. Dammak, H. Fan, M.P. Thi, Mater. Lett. 68, 300 (2012)

    Article  Google Scholar 

  8. L. Liu, M. Wu, Y. Huang, L. Fang, H. Fan, H. Dammak, M.P. Thi, Mater. Res. Bull. 46, 1467 (2011)

    Article  Google Scholar 

  9. H. Birol, D. Damjanovic, N. Setter, J. Eur. Ceram. Soc. 26, 861 (2006)

    Article  Google Scholar 

  10. J.J. Zhou, J.F. Li, X.W. Zhang, J. Eur. Ceram. Soc. 32, 267 (2012)

    Article  Google Scholar 

  11. L. Liu, S. Zheng, R. Huang, D. Shi, Y. Huang, S. Wu, Y. Li, L. Fang, C. Hu, Adv. Powder Technol. 24, 908 (2013)

    Article  Google Scholar 

  12. L.J. Liu, D.P. Shi, M. Knapp, H. Ehrenberg, L. Fang, J. Chen, J. Appl. Phys. 116, 184104 (2014)

    Article  Google Scholar 

  13. L. Ramajoa, M. Castroa, A. del Campob, J.F. Fernandezb, F. Rubio-Marcosb, J. Eur. Ceram. Soc. 34, 2249 (2014)

    Article  Google Scholar 

  14. Y.L. Qin, J.L. Zhang, Y.Q. Tan, W.Z. Yao, C.L. Wang, S.J. Zhang, J. Eur. Ceram. Soc. 34, 4177 (2014)

    Article  Google Scholar 

  15. F. Rubio-Marcos, P. Marchet, J.J. Romero, J.F. Fernandez, J. Eur. Ceram. Soc. 31, 2309 (2011)

    Article  Google Scholar 

  16. J. Du, X.J. Yi, Z.J. Xu, C.L. Ban, D.F. Zhang, P.P. Zhao, C.M. Wang, J. Alloys Compd. 541, 454 (2012)

    Article  Google Scholar 

  17. T. Zheng, J. Wu, D. Xiao, J. Zhu, Scr. Mater. 94, 25 (2015)

    Article  Google Scholar 

  18. X. Wang, J. Wu, T. Zheng, X. Cheng, B. Zhang, D. Xiao, J.G. Zhu, Curr. Appl. Phys. 14, 809 (2015)

    Article  Google Scholar 

  19. X. Lv, J. Wu, D. Xiao, H. Tao, Y. Yuan, J. Zhu, X.Q. Wang, X.J. Lou, Dalton Trans. 44, 4440 (2015)

    Article  Google Scholar 

  20. J. Li, Y. Li, Z. Zhou, R. Guo, A.S. Bhalla, Ceram. Int. 41, 6657 (2015)

    Article  Google Scholar 

  21. P. Kumari, R. Rai, A.L. Kholkin, J. Alloys Compd. 637, 203 (2015)

    Article  Google Scholar 

  22. T. Zheng, J. Wu, X. Cheng, X. Wang, B. Zhang, D. Xiao, J.G. Zhu, X.Q. Wang, X.J. Lou, J. Mater. Chem. C 2, 8796 (2014)

    Article  Google Scholar 

  23. J. Hao, Z. Xu, R. Chu, W. Li, J. Du, J. Mater. Sci.: Mater. Electron. 26, 7867 (2015)

    Google Scholar 

  24. J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, Mater. Res. Bull. 65, 94 (2015)

    Article  Google Scholar 

  25. S.J. Zhang, R. Xia, H. Hao, H.X. Liu, T.R. Shrout, Appl. Phys. Lett. 92, 152904 (2008)

    Article  Google Scholar 

  26. Y. Saito, H. Takao, I. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  Google Scholar 

  27. R.Z. Zuo, Z.K. Xu, L.T. Li, J. Phys. Chem. Solids 69, 1728 (2008)

    Article  Google Scholar 

  28. V. Bobnar, J. Holc, M. Hrovat, M. Kosec, J. Appl. Phys. 101, 074103 (2007)

    Article  Google Scholar 

  29. R.P. Wang, H. Bando, M. Kidate, Y. Nishihara, M. Itoh, Jpn. J. Appl. Phys. 50, 09ND10 (2011)

    Article  Google Scholar 

  30. M.R. Bafandeh, R. Gharahkhani, J.S. Lee, J. Alloys Compd. 602, 285 (2014)

    Article  Google Scholar 

  31. K. Uchino, S. Nomura, Ferroelectronics 44, 55 (1982)

    Article  Google Scholar 

  32. H.W. Du, Y.Q. Huang, H.P. Tang, H.N. Qin, W. Feng, Mater. Lett. 106, 141 (2013)

    Article  Google Scholar 

  33. R. Waser, J. Am. Ceram. Soc. 74, 1934 (1991)

    Article  Google Scholar 

  34. Y.Q. Huang, H.W. Du, W. Feng, H. Qin, Q.B. Hu, J. Alloys Compd. 590, 435 (2014)

    Article  Google Scholar 

  35. G. Ray, N. Sinha, B. Kumar, Mater. Chem. Phys. 142, 619 (2013)

    Article  Google Scholar 

  36. S. Nomura, K. Uchino, Ferroelectronics 41, 117 (1982)

    Article  Google Scholar 

  37. W.L. Zhong, P.L. Zhang, H.C. Chen, F.S. Chen, Y.Y. Song, J. Chin. Ceram. Soc. 13, 350 (1985)

    Google Scholar 

  38. H.L. Du, W.C. Zhou, F. Luo, J. Appl. Phys. 104, 044104 (2008)

    Article  Google Scholar 

  39. H.L. Cheng, H.L. Du, W.C. Zhou, D.M. Zhu, F. Luo, B.X. Xu, J. Am. Ceram. Soc. 96, 833 (2013)

    Article  Google Scholar 

  40. X.L. Chen, J. Chen, D.D. Ma, G.S. Huang, L. Fang, H.F. Zhou, Mater. Lett. 145, 247 (2015)

    Article  Google Scholar 

  41. W. Pan, C.F. Yue, O. Tosyali, J. Am. Ceram. Soc. 75, 1534 (1992)

    Article  Google Scholar 

  42. K. Miura, M. Tanakar, Jpn. J. Appl. Phys. 35, 3488 (1996)

    Article  Google Scholar 

  43. J. Shieh, J.E. Huber, N.A. Fleck, J. Eur. Ceram. Soc. 26, 95 (2006)

    Article  Google Scholar 

  44. A. Levstik, V. Bobnar, Z. Kutnjak, C. Filipic, M. Kosec, J. Eur. Ceram. Soc. 19, 1233 (1999)

    Article  Google Scholar 

  45. J. Glaum, M. Hoffma, J. Am. Ceram. Soc. 97, 665 (2014)

    Article  Google Scholar 

  46. F.Z. Yao, J. Glaum, K. Wang, W. Jo, J. Rödel, J.F. Li, Appl. Phys. Lett. 103, 192907 (2013)

    Article  Google Scholar 

  47. E.A. Patterson, D.P. Cann, Appl. Phys. Lett. 101, 042905 (2012)

    Article  Google Scholar 

  48. N. Kumar, D.P. Cann, J. Appl. Phys. 114, 054102 (2013)

    Article  Google Scholar 

  49. F.Z. Yao, E.A. Patterson, K. Wang, W. Jo, J. Rödel, J.F. Li, Appl. Phys. Lett. 104, 242912 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51302124, 51372110, 51302056, 51402144 and 51502127) and the Research Foundation of Liaocheng University (Nos. 318011301 and 318011306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Xu, Z., Chu, R. et al. (K0.5Na0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3–SrZrO3 ceramics with good fatigue-resistance and temperature-stable piezoelectric properties. J Mater Sci: Mater Electron 27, 13249–13258 (2016). https://doi.org/10.1007/s10854-016-5472-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5472-7

Keywords

Navigation