Skip to main content
Log in

Recent progress of Sn–Ag–Cu lead-free solders bearing alloy elements and nanoparticles in electronic packaging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Sn–Ag–Cu lead-free solders, containing alloy elements and nanoparticles, have been extensively investigated. With the extensive prevalence of 3D IC package, a major concern of Sn–Ag–Cu based solders today is continuously focused on extending service life of solder bonding formed between solders and substrates. The critical issues and improvements on Sn–Ag–Cu solders bearing alloys and nanoparticles are outlined and evaluated in this review. It can be summarized that appropriate content of certain alloys or nanoparticles addition to Sn–Ag–Cu solder is possible to tailor the solder properties, such as the melting and solidification behaviors, oxidation resistance, wettability, (interfacial) microstructure, and mechanical properties. Worthy of note is that reliability issues such as creep behavior, thermomechanical fatigue, electromigration, thermomigration and Sn whisker were briefly discussed and analyzed to lay down a solid foundation for the future development of 3D IC technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. L. Zhang, K.N. Tu, Structure and properties of lead-free solders bearing micro and nano particles. Mater. Sci. Eng. R 82, 1–32 (2014)

    Article  Google Scholar 

  2. M. Pecht, T. Shibutani, L. Wu, A reliability assessment guide for the transition planning to lead-free electronics for companies whose products are RoHS exempted or excluded. Microelectron. Reliab. (2016). doi:10.1016/j.microrel.2016.03.020

    Google Scholar 

  3. L.L. Gao et al., Effects of trace rare earth Nd addition on microstructure and properties of SnAgCu solder. J. Mater. Sci. Mater. Electron. 21(7), 643–648 (2010)

    Article  Google Scholar 

  4. J.W. Yoon, S.W. Kim, S.B. Jung, I.M.C. Morphology, Interfacial reaction and joint reliability of Pb-free Sn–Ag–Cu solder on electrolytic Ni BGA substrate. J. Alloys Compd. 392(1), 247–252 (2005)

    Article  Google Scholar 

  5. D.X. Luo, S.B. Xue, Z.Q. Li, Effects of Ga addition on microstructure and properties of Sn–0.5Ag–0.7Cu solder. J. Mater. Sci. Mater. Electron. 25(8), 3566–3571 (2014)

    Article  Google Scholar 

  6. S. Liu, S.B. Xue, P. Xue, D.X. Luo, Present status of Sn–Zn lead-free solders bearing alloying elements. J. Mater. Sci. Mater. Electron. 26(7), 4389–4411 (2015)

    Article  Google Scholar 

  7. A.E. Hammad, Evolution of microstructure, thermal and creep properties of Ni-doped Sn–0.5Ag–0.7Cu low-Ag solder alloys for electronic applications. Mater. Des. 52, 663–670 (2013)

    Article  Google Scholar 

  8. L. Sun, L. Zhang, Properties and microstructures of Sn–Ag–Cu–X lead-free solder joints in electronic packaging. Adv. Mater. Sci. Eng. 2015, 1–16 (2015)

    Google Scholar 

  9. C.H. Chen et al., Interfacial reactions of low-melting Sn–Bi–Ga solder alloy on Cu substrate. J. Electron. Mater. 45, 1–6 (2016)

    Article  Google Scholar 

  10. G. Zeng, S.B. Xue, L. Zhang, L.L. Gao, A review on the interfacial intermetallic compounds between Sn–Ag–Cu based solders and substrates. J. Mater. Sci. Mater. Electron. 21(5), 421–440 (2010)

    Article  Google Scholar 

  11. A.T. Tan, A.W. Tan, F. Yusof, Influence of nanoparticle addition on the formation and growth of intermetallic compounds (IMCs) in Cu/Sn–Ag–Cu/Cu solder joint during different thermal conditions. Sci. Technol. Adv. Mater. (2016). doi:10.1088/1468-6996/16/3/033505

    Google Scholar 

  12. Y. Gu et al., Effect of nano-Fe2O3 additions on wettability and interfacial intermetallic growth of low-Ag content Sn–Ag–Cu solders on Cu substrates. J. Alloys. Compd. 627, 39–47 (2015)

    Article  Google Scholar 

  13. W.Y. Chen, C.Y. Yu, J.G. Duh, Improving the shear strength of Sn–Ag–Cu–Ni/Cu–Zn solder joints via modifying the microstructure and phase stability of Cu–Sn intermetallic compounds. Intermetallics 54, 181–186 (2014)

    Article  Google Scholar 

  14. N. Hamada et al., Effect of addition of small amount of zinc on microstructural evolution and thermal shock behavior in low-Ag Sn–Ag–Cu solder joints during thermal cycling. Mater. Trans. 54(5), 796–805 (2013)

    Article  Google Scholar 

  15. J.X. Wang, H. Nishikawa, Impact strength of Sn–3.0Ag–0.5Cu solder bumps during isothermal aging. Microelectron. Reliab. 54(8), 1583–1591 (2014)

    Article  Google Scholar 

  16. J.Y. Son et al., Study on the Characteristics of Various Dopants in Sn-1Ag-0.8Cu Solder[C]//Electronics Packaging Technology Conference (EPTC), 2011 IEEE 13th IEEE, 231–235 (2011)

  17. A. Sharma et al., Electromigration of composite Sn–Ag–Cu solder bumps. Electron. Mater. Lett. 11(6), 1072–1077 (2015)

    Article  Google Scholar 

  18. F.Y. Ouyang, C.L. Kao, In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn–3Ag–0.5Cu flip chip solder joints. J. Appl. Phys. 110(12), 123525 (2011)

    Article  Google Scholar 

  19. V.L. Niranjani et al., Influence of temperature and strain rate on tensile properties of single walled carbon nanotubes reinforced Sn–Ag–Cu lead free solder alloy composites. Mater. Sci. Eng. A 529, 257–264 (2011)

    Article  Google Scholar 

  20. Q.K. Zhang et al., Effects of Ga addition on microstructure and properties of Sn–Ag–Cu/Cu solder joints. J. Alloys Compd. 622, 973–978 (2015)

    Article  Google Scholar 

  21. A.E. Hammad, A.M. El-Taher, Mechanical deformation behavior of Sn–Ag–Cu solders with minor addition of 0.05 wt% Ni. J. Electron. Mater. 43(11), 4146–4157 (2014)

    Article  Google Scholar 

  22. L. Zhang et al., Properties and microstructures of SnAgCu–xEu alloys for concentrator silicon solar cells solder layer. Sol. Energy Mater. Sol. C 130, 397–400 (2014)

    Article  Google Scholar 

  23. M. Yang et al., Effects of Ag content on the interfacial reactions between liquid Sn–Ag–Cu solders and Cu substrates during soldering. J. Alloys Compd. (2016). doi:10.1016/j.jallcom.2016.03.177

    Google Scholar 

  24. L.W. Lin et al., Alloying modification of Sn–Ag–Cu solders by manganese and titanium. Microelectron. Reliab. 49(3), 235–241 (2009)

    Article  Google Scholar 

  25. L.L. Gao et al., Effect of praseodymium on the microstructure and properties of Sn3.8Ag0.7Cu solder. J. Mater. Sci. Mater. Electron. 21(9), 910–916 (2010)

    Article  Google Scholar 

  26. A.T. Wu, Y.C. Ding, The suppression of tin whisker growth by the coating of tin oxide nano particles and surface treatment. Microelectron. Reliab. 49(3), 318–322 (2009)

    Article  Google Scholar 

  27. T.H. Chuang, H.J. Lin, Inhibition of whisker growth on the surface of Sn–3Ag–0.5Cu–0.5Ce solder alloyed with Zn. J. Electron. Mater. 38(3), 420–424 (2009)

    Article  Google Scholar 

  28. L.M. Yang, Z.F. Zhang, Effects of Y2O3 nanoparticles on growth behaviors of Cu6Sn5 grains in soldering reaction. J. Electron. Mater. 42(12), 3552–3558 (2013)

    Article  Google Scholar 

  29. I. Shafiq, H.Y. Lau, Y.C. Chan, Effect of trace diamond nanoparticle addition on the interfacial, mechanical, and damping properties of Sn–3.0Ag–0.5Cu solder alloy. J. Electron. Mater. 42(9), 2835–2847 (2013)

    Article  Google Scholar 

  30. Y. Tang, Y.C. Pan, G.Y. Li, Influence of TiO2 nanoparticles on thermal property, wettability and interfacial reaction in Sn–3.0Ag–0.5Cu–xTiO2 composite solder. J. Mater. Sci. Mater. Electron. 24(5), 1587–1594 (2013)

    Article  Google Scholar 

  31. A. Fawzy et al., Effect of ZnO nanoparticles addition on thermal, microstructure and tensile properties of Sn–3.5Ag–0.5Cu (SAC355) solder alloy. J. Mater. Sci. Mater. Electron. 24(9), 3210–3218 (2013)

    Article  Google Scholar 

  32. S. Xu et al., Interfacial intermetallic growth and mechanical properties of carbon nanotubes reinforced Sn3.5Ag0.5Cu solder joint under current stressing. J. Alloys Compd. 595, 92–102 (2014)

    Article  Google Scholar 

  33. A.A. El-Daly et al., Microstructural modifications and properties of SiC nanoparticles-reinforced Sn–3.0Ag–0.5Cu solder alloy. Mater. Des. 65, 1196–1204 (2015)

    Article  Google Scholar 

  34. A. Haseeb, M.M. Arafat, M.R. Johan, Stability of molybdenum nanoparticles in Sn–3.8Ag–0.7Cu solder during multiple reflow and their influence on interfacial intermetallic compounds. Mater. Charact. 64, 27–35 (2012)

    Article  Google Scholar 

  35. L.C. Tsao et al., Effects of nano-Al2O3 additions on microstructure development and hardness of Sn3.5Ag0.5Cu solder. Mater. Des. 31(10), 4831–4835 (2010)

    Article  Google Scholar 

  36. S. Chellvarajoo, M.Z. Abdullah, C.Y. Khor, Effects of diamond nanoparticles reinforcement into lead-free Sn–3.0Ag–0.5Cu solder pastes on microstructure and mechanical properties after reflow soldering process. Mater. Des. 82, 206–215 (2015)

    Google Scholar 

  37. H.R. Kotadia, P.D. Howes, S.H. Mannan, A review: on the development of low melting temperature Pb-free solders. Microelectron. Reliab. 54(6), 1253–1273 (2014)

    Article  Google Scholar 

  38. A.A. El-Daly et al., Thermal analysis and mechanical properties of Sn–1.0Ag–0.5Cu solder alloy after modification with SiC nano-sized particles. J. Mater. Sci. Mater. Electron. 24(8), 2976–2988 (2013)

    Article  Google Scholar 

  39. D.X. Luo, S.B. Xue, S. Liu, Investigation on the intermetallic compound layer growth of Sn–0.5Ag–0.7Cu–xGa/Cu solder joints during isothermal aging. J. Mater. Sci. Mater. Electron. 25(12), 5195–5200 (2014)

    Article  Google Scholar 

  40. A.A. El-Daly, A.M. El-Taher, S. Gouda, Novel Bi-containing Sn–1.5Ag–0.7Cu lead-free solder alloy with further enhanced thermal property and strength for mobile products. Mater. Des. 65, 796–805 (2015)

    Article  Google Scholar 

  41. C. Lejuste, F. Hodaj, L. Petit, Solid state interaction between a Sn–Ag–Cu–In solder alloy and Cu substrate. Intermetallics 36, 102–108 (2013)

    Article  Google Scholar 

  42. A.A. El-Daly, A.M. El-Taher, Evolution of thermal property and creep resistance of Ni and Zn-doped Sn–2.0Ag–0.5Cu lead-free solders. Mater. Des. 51, 789–796 (2013)

    Article  Google Scholar 

  43. A.A. El-Daly et al., Influence of Zn addition on the microstructure, melt properties and creep behavior of low Ag-content Sn–Ag–Cu lead-free solders. Mater. Sci. Eng. A 608, 130–138 (2014)

    Article  Google Scholar 

  44. C.L. Chuang et al., Effects of small amount of active Ti element additions on microstructure and property of Sn3.5Ag0.5Cu solder. Mater. Sci. Eng. A 558, 478–484 (2012)

    Article  Google Scholar 

  45. D.A.A. Shnawah et al., Microstructure, mechanical, and thermal properties of the Sn–1Ag–0.5Cu solder alloy bearing Fe for electronics applications. Mater. Sci. Eng. A 551, 160–168 (2012)

    Article  Google Scholar 

  46. L.L. Gao et al., Effect of alloying elements on properties and microstructures of SnAgCu solders. Microelectron. Eng. 87(11), 2025–2034 (2010)

    Article  Google Scholar 

  47. M.A. Dudek, N. Chawla, Effect of rare-earth (La, Ce, and Y) additions on the microstructure and mechanical behavior of Sn–3.9Ag–0.7Cu solder alloy. Metall. Mater. Trans. A 41(3), 610–620 (2010)

    Article  Google Scholar 

  48. X.D. Liu et al., Effect of graphene nanosheets reinforcement on the performance of SnAgCu lead-free solder. Mater. Sci. Eng. A 562, 25–32 (2013)

    Article  Google Scholar 

  49. Y.D. Han et al., Development of a Sn–Ag–Cu solder reinforced with Ni-coated carbon nanotubes. J. Mater. Sci. Mater. Electron. 22(3), 315–322 (2011)

    Article  Google Scholar 

  50. S. Chantaramanee et al., Development of a lead-free composite solder from Sn–Ag–Cu and Ag-coated carbon nanotubes. J. Mater. Sci. Mater. Electron. 24(10), 707–3715 (2013)

    Article  Google Scholar 

  51. A.A. El-Daly et al., Novel SiC nanoparticles-containing Sn–1.0Ag–0.5Cu solder with good drop impact performance. Mater. Sci. Eng. A 578, 62–71 (2013)

    Article  Google Scholar 

  52. K.C. Yung et al., Size control and characterization of Sn–Ag–Cu lead-free nanosolders by a chemical reduction process. J. Electron. Mater. 41(2), 313–321 (2012)

    Article  Google Scholar 

  53. F.E. Atalay et al., Nanowires of lead-free solder alloy SnCuAg. J. Nanomater. 2011, 37 (2011)

    Article  Google Scholar 

  54. A. Novikov, G. Holzhüter, M. Nowottnick. Low-Temperature Assembling Process with Nanoscaled Solder Layers[C]//Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on IEEE, 1–4 (2012)

  55. Y. Shu et al., Synthesis and thermal properties of low melting temperature tin/indium (Sn/In) lead-free nanosolders and their melting behavior in a vapor flux. J. Alloys Compd. 626, 391–400 (2015)

    Article  Google Scholar 

  56. A.A. El-Daly et al., Microstructure, mechanical properties, and deformation behavior of Sn–1.0Ag–0.5Cu solder after Ni and Sb additions. Mater. Des. 43, 40–49 (2013)

    Article  Google Scholar 

  57. A.A. El-Daly, A.E. Hammad, Enhancement of creep resistance and thermal behavior of eutectic Sn–Cu lead-free solder alloy by Ag and In-additions. Mater. Des. 40, 292–298 (2012)

    Article  Google Scholar 

  58. A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Improved creep resistance and thermal behavior of Ni-doped Sn–3.0Ag–0.5Cu lead-free solder. J. Alloys Compd. 587, 32–39 (2014)

    Article  Google Scholar 

  59. M. Amagai, A study of nanoparticles in Sn–Ag based lead free solders. Microelectron. Reliab. 48(1), 1–16 (2008)

    Article  Google Scholar 

  60. L. Zhang et al., Properties enhancement of SnAgCu solders containing rare earth Yb. Mater. Des. 57, 646–651 (2014)

    Article  Google Scholar 

  61. Z. Deng, Y. Qian, Effect of P on the oxidation resistance of Sn–0.7Cu lead-free solder. Electron. Process. Technol. 4, 000 (2006)

    Google Scholar 

  62. X.J. Wang et al., Effect of doping Al on the liquid oxidation of Sn–Bi–Zn solder. J. Mater. Sci. Mater. Electron. 25(5), 2297–2304 (2014)

    Article  Google Scholar 

  63. W.X. Dong et al., Effects of small amounts of Ni/P/Ce element additions on the microstructure and properties of Sn3.0Ag0.5Cu solder alloy. J. Mater. Sci. Mater. Electron. 20(10), 1008–1017 (2009)

    Article  Google Scholar 

  64. J. J. Wang et al., Study on low silver Sn–Ag–Cu–P alloy for wave soldering physical and failure analysis of integrated circuits (IPFA), 2013 20th IEEE International Symposium on the IEEE, 485–489 (2013)

  65. L. Hua et al., Effects of Zn, Ge Doping on Electrochemical Migration, Oxidation Characteristics and Corrosion Behavior of Lead-Free Sn3.0Ag0.5Cu Solder for Electronic Packaging[C]//Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), 2010 11th International Conference on IEEE, 1151–1157 (2010)

  66. A.J. Jeon et al., Effect of indium content on the melting point, dross, and oxidation characteristics of Sn–2Ag–3Bi–xIn Solders. J. Electron. Packag. 135(2), 021006 (2013)

    Article  Google Scholar 

  67. M.A. Dudek, N. Chawla, Oxidation behavior of rare-earth-containing Pb-free solders. J. Electron. Mater. 38(2), 210–220 (2009)

    Article  Google Scholar 

  68. D. Bonn et al., Wetting and spreading. Rev. Mod. Phys. 81(2), 739 (2009)

    Article  Google Scholar 

  69. M.E. Loomans et al., Investigation of multi-component lead-free solders. J. Electron. Mater. 23(8), 741–746 (1994)

    Article  Google Scholar 

  70. W.F. Feng, C.Q. Wang, M. Morinaga, Electronic structure mechanism for the wettability of Sn-based solder alloys. J. Electron. Mater. 31(3), 185–190 (2002)

    Article  Google Scholar 

  71. G. Zeng et al., Recent advances on Sn–Cu solders with alloying elements: review. J. Mater. Sci. Mater. Electron. 22(6), 565–578 (2011)

    Article  Google Scholar 

  72. W.X. Chen et al., Effects of rare earth Ce on properties of Sn–9Zn lead-free solder. J. Mater. Sci. Mater. Electron. 21(7), 719–725 (2010)

    Article  Google Scholar 

  73. H.W. Zhang, F.L. Sun, Y. Liu, Effects of Adding Some Elements on Solderability of Sn0.7 Ag0.5 Cu Solder[C]//Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), 2010 11th International Conference on IEEE, 254–257 (2010)

  74. S. Lu et al., The effects of Bi on physical and microstructural characteristics of Sn–Ag–Cu lead-free solders[C]//physical and failure analysis of integrated circuits, 2009. IPFA 2009. 16th IEEE international symposium on the IEEE, 782–784 (2009)

  75. Y. Li et al., Effect of TiO2 addition concentration on the wettability and intermetallic compounds growth of Sn3.0Ag0.5Cu–xTiO2 nano-composite solders. J. Mater. Sci. Mater. Electron. 25(9), 3816–3827 (2014)

    Article  Google Scholar 

  76. L. Bernstein, Semiconductor joining by the solid–liquid-interdiffusion (SLID) process I. The systems Ag–In, Au–In, and Cu–In. J. Electrochem. Soc. 113(12), 1282–1288 (1966)

    Article  Google Scholar 

  77. L. Yang et al., Effect of BaTiO3 on the microstructure and mechanical properties of Sn1.0Ag0.5Cu lead-free solder. J. Mater. Sci. Mater. Electron. 26(1), 613–619 (2015)

    Article  Google Scholar 

  78. M.J. Rizvi et al., Wetting and reaction of Sn–2.8Ag–0.5Cu–1.0Bi solder with Cu and Ni substrates. J. Electron. Mater. 34(8), 1115–1122 (2005)

    Article  Google Scholar 

  79. X.J. Liu et al., Thermodynamic calculation of phase equilibria in the Sn–Ag–Cu–Ni–Au system. J. Electron. Mater. 36(11), 1429–1441 (2007)

    Article  Google Scholar 

  80. K.S. Kim, S.H. Huh, K. Suganuma, Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints. J. Alloys Compd. 352(1), 226–236 (2003)

    Article  Google Scholar 

  81. S.K. Kang et al., Ag3Sn plate formation in the solidification of near-ternary eutectic Sn–Ag–Cu. JOM 55(6), 61–65 (2003)

    Article  Google Scholar 

  82. L. Yang, Z.F. Zhang, Growth behavior of intermetallic compounds in Cu/Sn3.0Ag0.5Cu solder joints with different rates of cooling. J. Electron. Mater. 44(1), 590–596 (2015)

    Article  Google Scholar 

  83. N.Y. Chen, Bond-parametric function and its applications (Science Press, Peking, 1976), p. 15

    Google Scholar 

  84. D.A. Shnawah et al., Study on coarsening of Ag3Sn intermetallic compound in the Fe-modified Sn–1Ag–0.5Cu solder alloys. J. Alloys Compd. 622, 184–188 (2015)

    Article  Google Scholar 

  85. L.S. Darken, R.W. Gurry, Physical chemistry of metals[M] (McGraw-Hill, New York, 1953)

    Google Scholar 

  86. X. Chen et al., Microstructures and mechanical properties of Sn–0.1Ag–0.7Cu–(Co, Ni, and Nd) lead-free solders. J. Electron. Mater. 44(2), 725–732 (2015)

    Article  Google Scholar 

  87. A.A. El-Daly, A.M. El-Taher, S. Gouda, Development of new multicomponent Sn–Ag–Cu–Bi lead-free solders for low-cost commercial electronic assembly. J. Alloys Compd. 627, 268–275 (2015)

    Article  Google Scholar 

  88. A.A. El-Daly et al., Microstructural modifications and properties of low-Ag-content Sn–Ag–Cu solder joints induced by Zn alloying. J. Alloys Compd. 653, 402–410 (2015)

    Article  Google Scholar 

  89. S.Y. Xu et al., Effects of FeCo magnetic nanoparticles on microstructure of Sn–Ag–Cu alloys. J. Appl. Phys. 113(17), 17A301 (2013)

    Google Scholar 

  90. K.N. Tu, Irreversible processes of spontaneous whisker growth in bimetallic Cu–Sn thin-film reactions. Phys. Rev. B 49(3), 2030 (1994)

    Article  Google Scholar 

  91. K.N. Tu, R.D. Thompson, Kinetics of interfacial reaction in bimetallic Cu–Sn thin films. Acta Metall. 30(5), 947–952 (1982)

    Article  Google Scholar 

  92. L. Zhang et al., Interface reaction between SnAgCu/SnAgCuCe solders and Cu substrate subjected to thermal cycling and isothermal aging. J. Alloys Compd. 510(1), 38–45 (2012)

    Article  Google Scholar 

  93. S.Y. Chang et al., The morphology and kinetic evolution of intermetallic compounds at Sn–Ag–Cu solder/Cu and Sn–Ag–Cu–0.5Al2O3 composite solder/Cu interface during soldering reaction. J. Mater. Sci. Mater. Electron. 23(1), 100–107 (2012)

    Article  Google Scholar 

  94. T. Fouzder et al., Influence of SrTiO3 nano-particles on the microstructure and shear strength of Sn–Ag–Cu solder on Au/Ni metallized Cu pads. J. Alloys Compd. 509(5), 1885–1892 (2011)

    Article  Google Scholar 

  95. J.F. Li, P.A. Agyakwa, C.M. Johnson, Effect of trace Al on growth rates of intermetallic compound layers between Sn-based solders and Cu substrate. J. Alloys Compd. 545, 70–79 (2012)

    Article  Google Scholar 

  96. C.E. Ho et al., Influence of Pd concentration on the interfacial reaction and mechanical reliability of the Ni/Sn–Ag–Cu–xPd System. J. Electron. Mater. 41(1), 2–10 (2012)

    Article  Google Scholar 

  97. G.Y. Li et al., Influence of dopant on growth of intermetallic layers in Sn–Ag–Cu solder joints. J. Electron. Mater. 40(2), 165–175 (2011)

    Article  Google Scholar 

  98. A.A. El-Daly, A.M. El-Taher, Improved strength of Ni and Zn-doped Sn–2.0Ag–0.5Cu lead-free solder alloys under controlled processing parameters. Mater. Des. 47(9), 607–614 (2013)

    Article  Google Scholar 

  99. A.K. Gain et al., Effect of small Sn–3.5Ag–0.5Cu additions on the structure and properties of Sn–9Zn solder in ball grid array packages. Microelectron. Eng. 86(11), 2347–2353 (2009)

    Article  Google Scholar 

  100. J. Keller et al., Mechanical properties of Pb-free SnAg solder joints. Acta Mater. 59(7), 2731–2741 (2011)

    Article  Google Scholar 

  101. L.M. Yang, Z.F. Zhang, Effect of Y2O3 nanoparticles addition on the microstructure and tensile strength of Cu/Sn3.0Ag0.5Cu solder joint. J. Appl. Phys. 117(1), 015308 (2015)

    Article  Google Scholar 

  102. A.K. Gain, Y.C. Chan, W.K.C. Yung, Effect of additions of ZrO2 nano-particles on the microstructure and shear strength of Sn–Ag–Cu solder on Au/Ni metallized Cu pads. Microelectron. Reliab. 51(12), 2306–2313 (2011)

    Article  Google Scholar 

  103. L.C. Tsao et al., Effects of nano-Al2O3 particles on microstructure and mechanical properties of Sn3.5Ag0.5Cu composite solder ball grid array joints on Sn/Cu pads. Mater. Des. 50, 774–781 (2013)

    Article  Google Scholar 

  104. Y. Liu, F.L. Sun, X.M. Li, Effect of Ni, Bi concentration on the microstructure and shear behavior of low-Ag SAC–Bi–Ni/Cu solder joints. J. Mater. Sci. Mater. Electron. 25(6), 2627–2633 (2014)

    Article  Google Scholar 

  105. D.A.A. Shnawah et al., The bulk alloy microstructure and mechanical properties of Sn–1Ag–0.5Cu–xAl solders (x = 0, 0.1 and 0.2 wt%). J. Mater. Sci. Mater. Electron. 23(11), 1988–1997 (2012)

    Article  Google Scholar 

  106. A.E. Hammad, Investigation of microstructure and mechanical properties of novel Sn–0.5Ag–0.7Cu solders containing small amount of Ni. Mater. Des. 50(17), 108–116 (2013)

    Article  Google Scholar 

  107. A.A. El-Daly et al., Properties enhancement of low Ag-content Sn–Ag–Cu lead-free solders containing small amount of Zn. J. Alloys Compd. 614, 20–28 (2014)

    Article  Google Scholar 

  108. V.L. Niranjani et al., Creep behaviour of SAC387 lead free solder alloy reinforced with single walled carbon nanotubes. Trans. Indian Met. 68(2), 311–317 (2015)

    Article  Google Scholar 

  109. A.A. El-Daly et al., Tensile deformation behavior and melting property of nano-sized ZnO particles reinforced Sn–3.0Ag–0.5Cu lead-free solder. Mater. Sci. Eng. A 618, 389–397 (2014)

    Article  Google Scholar 

  110. A.A. El-Daly, A.M. El-Taher, T.R. Dalloul, Enhanced ductility and mechanical strength of Ni-doped Sn–3.0Ag–0.5Cu lead-free solders. Mater. Des. 55, 309–318 (2014)

    Article  Google Scholar 

  111. Y. Lee, C. Basaran, A creep model for solder alloys. J. Electron. Packag. 133(4), 044501 (2011)

    Article  Google Scholar 

  112. D. Witkin, Creep behavior of Bi-containing lead-free solder alloys. J. Electron. Mater. 41(2), 190–203 (2012)

    Article  Google Scholar 

  113. Y.D. Han et al., Creep mitigation in Sn–Ag–Cu composite solder with Ni-coated carbon nanotubes. J. Mater. Sci. Mater. Electron. 23(5), 1108–1115 (2011)

    Article  Google Scholar 

  114. Z.B. Yang, W. Zhou, P. Wu, Effects of Ni-coated carbon nanotubes addition on the microstructure and mechanical properties of Sn–Ag–Cu solder alloys. Mater. Sci. Eng. A 590, 295–300 (2014)

    Article  Google Scholar 

  115. F.X. Che, X. Zhang, J.K. Lin, Reliability study of 3D IC packaging based on through-silicon interposer (TSI) and silicon-less interconnection technology (SLIT) using finite element analysis. Microelectron. Reliab. (2016). doi:10.1016/j.microrel.2015.12.041

    Google Scholar 

  116. C.S. Lau et al., Thermo-mechanical challenges of reflowed lead-free solder joints in surface mount components: a review. Solder. Surf. Mt. Technol. 28(2), 41–62 (2016)

    Article  Google Scholar 

  117. Q. Zhou et al., Microstructural evolution of SAC305 solder joints in wafer level chip-scale packaging (WLCSP) with continuous and interrupted accelerated thermal cycling. J. Electron. Mater. 45(6), 1–12 (2016)

    Google Scholar 

  118. L. Zhang et al., Microstructures and fatigue life of SnAgCu solder joints bearing nano-Al particles in QFP devices. Electron. Mater. Lett. 10(3), 645–647 (2014)

    Article  Google Scholar 

  119. M.A. Matin, W.P. Vellinga, M.G.D. Geers, Thermomechanical fatigue damage evolution in SAC solder joints. Mater. Sci. Eng. A 445, 73–85 (2007)

    Article  Google Scholar 

  120. F.X. Che, J.H.L. Pang, Characterization of IMC layer and its effect on thermomechanical fatigue life of Sn–3.8Ag–0.7Cu solder joints. J. Alloys Compd. 541, 6–13 (2012)

    Article  Google Scholar 

  121. S. Mukherjee, T.T. Mattila, A. Dasgupta, Effect of Addition of Manganese and Antimony on Viscoplastic Properties and Cyclic Mechanical Durability of Low Silver SnAgCu solder[C]//Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2012 13th IEEE Intersociety Conference on IEEE, 888–895 (2012)

  122. Y.D. Han et al., Interfacial reaction and shear strength of Ni-coated carbon nanotubes reinforced Sn–Ag–Cu solder joints during thermal cycling. Intermetallics 31, 72–78 (2012)

    Article  Google Scholar 

  123. D.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, A review on thermal cycling and drop impact reliability of SAC solder joint in portable electronic products. Microelectron. Reliab. 52(1), 90–99 (2012)

    Article  Google Scholar 

  124. A.M. Yu et al., Pd-doped Sn–Ag–Cu–In solder material for high drop/shock reliability. Mater. Res. Bull. 45(3), 359–361 (2010)

    Article  Google Scholar 

  125. K. Lee, K.S. Kim, K. Suganuma, Influence of indium addition on electromigration behavior of solder joint. J. Mater. Res. 26(20), 2624–2631 (2011)

    Article  Google Scholar 

  126. Q.T. Huynh et al., Electromigration in eutectic Sn–Pb solder lines. J. Appl. Phys. 89(8), 4332–4335 (2001)

    Article  Google Scholar 

  127. X. Zhu et al., Electromigration in Sn–Ag solder thin films under high current density. Thin Solid Films 565(9), 193–201 (2014)

    Article  Google Scholar 

  128. F. Su et al., Study of electromigration-induced stress of solder. J. Electron. Packag. 137(2), 021006 (2015)

    Article  Google Scholar 

  129. C. Chen, H.M. Tong, K.N. Tu, Electromigration and thermomigration in Pb-free flip-chip solder joints. Annu. Rev. Mater. Res. 40, 531–555 (2010)

    Article  Google Scholar 

  130. W. Yao, C. Basaran, Computational damage mechanics of electromigration and thermomigration. J. Appl. Phys. 114(10), 103708 (2013)

    Article  Google Scholar 

  131. K.N. Tu, H.Y. Hsiao, C. Chen, Transition from flip chip solder joint to 3D IC microbump: its effect on microstructure anisotropy. Microelectron. Reliab. 53(1), 2–6 (2013)

    Article  Google Scholar 

  132. Y. Tao et al., Theoretical Analysis on the Element Diffusion During Thermomigration[C]//Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 2011 12th International Conference on IEEE, 1–5 (2011)

  133. H.B. Huntington, A.R. Grone, Current-induced marker motion in gold wires. J. Phys. Chem. Solids 20(1), 76–87 (1961)

    Article  Google Scholar 

  134. H.X. Xie et al., Electromigration damage characterization in Sn–3.9Ag–0.7Cu and Sn–3.9Ag–0.7Cu–0.5Ce solder joints by three-dimensional X-ray tomography and scanning electron microscopy. J. Electron. Mater. 43(1), 33–42 (2014)

    Article  Google Scholar 

  135. K. Zeng, K.N. Tu, Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater. Sci. Eng. R 38(2), 55–105 (2002)

    Article  Google Scholar 

  136. Z. Yang, W. Zhou, P. Wu, Effects of Ni-coated carbon nanotubes addition on the electromigration of Sn–Ag–Cu solder joints. J. Alloys Compd. 581, 202–205 (2013)

    Article  Google Scholar 

  137. Z.H.A.O. Ni et al., Research progress in thermomigration of metal atoms in micro solder joints and its effect on interfacial reaction. Chin. J. Nonferr. Met. 25(8), 2157–2166 (2015)

    Google Scholar 

  138. S.H. Lee, C.M. Chen, Electromigration in a Sn–3 wt% Ag–0.5 wt% Cu–3 wt% Bi solder stripe between two Cu electrodes under current stressing. J. Electron. Mater. 40(9), 1943–1949 (2011)

    Article  Google Scholar 

  139. L. Ma et al., Effects of Co additions on electromigration behaviors in Sn–3.0Ag–0.5Cu-based solder joint. J. Mater. Sci. 46(14), 4896–4905 (2011)

    Article  Google Scholar 

  140. F.L. Sun, Y. Liu, J.B. Wang, Improving the Solderability and Electromigration Behavior of Low-Ag SnAgCu Soldering[C]//Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2011 12th International Conference on IEEE, 1/5–5/5 (2011)

  141. X. Zhao et al., The effect of adding Ni and Ge microelements on the electromigration resistance of low-Ag based SnAgCu solder. Microsyst. Technol. 18(12), 2077–2084 (2012)

    Article  Google Scholar 

  142. H.Y. Liu et al., Effects of Zn addition on electromigration behavior of Sn–1Ag–0.5Cu solder interconnect. J. Mater. Sci. Mater. Electron. 24(1), 211–216 (2013)

    Article  Google Scholar 

  143. P. He et al., Effect of 0.8 wt% Al 2 O 3 Nanoparticles Addition on the Microstructures and Electromigration Behavior of SnAgCu Solder Joint[C]//Electronic Packaging Technology (ICEPT), 2015 16th International Conference on IEEE, 1014–1017 (2015)

  144. T.H. Chuang, Rapid whisker growth on the surface of Sn–3Ag–0.5Cu–1.0Ce solder joints. Scr. Mater. 55(11), 983–986 (2006)

    Article  Google Scholar 

  145. H.J. Lin, T.H. Chuang, Effects of Ce and Zn additions on the microstructure and mechanical properties of Sn–3Ag–0.5Cu solder joints. J. Alloys Compd. 500(2), 167–174 (2010)

    Article  Google Scholar 

  146. P. Xue et al., Inhibiting the growth of Sn whisker in Sn–9Zn lead-free solder by Nd and Ga. J. Mater. Sci. Mater. Electron. 25(6), 2671–2675 (2014)

    Article  Google Scholar 

  147. T.H. Chuang, C.C. Jain, Morphology of the Tin whiskers on the surface of a Sn–3Ag–0.5Cu–0.5Nd Alloy. Metall. Mater. Trans. A 42(3), 684–691 (2010)

    Article  Google Scholar 

  148. M.A. Dudek, N. Chawla, Mechanisms for Sn whisker growth in rare earth-containing Pb-free solders. Acta Mater. 57(15), 4588–4599 (2009)

    Article  Google Scholar 

  149. T.H. Chuang, S.F. Yen, Abnormal growth of tin whiskers in a Sn3Ag0.5Cu0.5Ce solder ball grid array package. J. Electron. Mater. 35(8), 1621–1627 (2006)

    Article  Google Scholar 

  150. L. Hua, C. Yang, Corrosion behavior, whisker growth, and electrochemical migration of Sn–3.0Ag–0.5 Cu solder doping with In and Zn in NaCl solution. Microelectron. Reliab. 51(12), 2274–2283 (2011)

    Article  Google Scholar 

  151. A. Sharma et al., Influence of current density on microstructure of pulse electrodeposited tin coatings. Mater. Charact. 68, 22–32 (2012)

    Article  Google Scholar 

  152. A. Baated et al., Effects of reflow atmosphere and flux on Sn whisker growth of Sn–Ag–Cu solders. J. Mater. Sci. Mater. Electron. 21(10), 1066–1075 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The Project (JSAWT-14-04) was supported by the Key Laboratory of Advanced Welding Technology of Jiangsu Province, China. This work was also supported by the Fundamental Research Funds for the Central Universities and the Foundation of Graduate Innovation Center in NUAA (Foundation No. kfjj20150604) and this work was also supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-bai Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Xue, Sb., Wang, Jw. et al. Recent progress of Sn–Ag–Cu lead-free solders bearing alloy elements and nanoparticles in electronic packaging. J Mater Sci: Mater Electron 27, 12729–12763 (2016). https://doi.org/10.1007/s10854-016-5407-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5407-3

Keywords

Navigation