Skip to main content
Log in

Effects of sputtering power, buffer layer and film thickness on ferroelectric properties of sputtered Bi0.9Gd0.1Fe0.9Co0.1O3 films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi0.9Gd0.1Fe0.9Co0.1O3 (BGFC) films were deposited successfully on Pt(111)/Ti/SiO2/Si(100) and SrRuO3 (SRO)/Pt(111)/Ti/SiO2/Si(100) substrates by radio frequency magnetron sputtering. Effects of sputtering power, buffer layer and film thickness on ferroelectric properties of the sputtered BGFC films were studied. X-ray diffraction demonstrated that all films had a single perovskite-type structure. Highly (012) and (024)-oriented BGFC films were formed on Pt(111)/Ti/SiO2/Si(100) and SRO/Pt(111)/Ti/SiO2/Si(100) substrates. The ferroelectric test indicated that the leakage current density of BGFC films sputtering at 40 W was smaller than that of BGFC films sputtering at 120 W, and its ferroelectric property was better than that of BGFC films sputtering at 120 W. Furthermore, the leakage current density of BGFC film with SRO buffer layer was improved and reduced by one order of magnitude under the same film thickness and sputtering power, comparing with the leakage current density of BGFC film without SRO buffer layer on Pt(111)/Ti/SiO2/Si(100) substrate. The ferroelectric property of BGFC thick film is better than that of BGFC thin film under the same sputtering power and applied electric field. The logJ–logE plots of BGFC films indicated that the leakage mechanisms of BGFC films with sputtering power of 40 and 120 W belong to the space-charge-limited conduction and Ohmic conduction, respectively. The mechanisms of the effects of sputtering power, buffer layer and film thickness on the ferroelectric properties of BGFC films were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  Google Scholar 

  2. P. Sharma, V. Verma, J. Magn. Magn. Mater. 374, 18–21 (2015)

    Article  Google Scholar 

  3. M.L. Yi, C.B. Wang, Q. Shen, L.M. Zhang, J. Mater. Sci.: Mater. Electron. 25, 82–86 (2014)

    Google Scholar 

  4. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvåg, O. Eriksson, Phys. Rev. B 74, 224412 (2006)

    Article  Google Scholar 

  5. J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A.P. Pyatakov, A.K. Zvezdin, D. Viehland, Appl. Phys. Lett. 84, 5261 (2004)

    Article  Google Scholar 

  6. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, Phys. Rev. B 71, 014113 (2005)

    Article  Google Scholar 

  7. P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C: Solid State Phys. 13, 1931 (1980)

    Article  Google Scholar 

  8. C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401 (2005)

    Article  Google Scholar 

  9. F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, J.M. Liu, Z.F. Ren, Appl. Phys. Lett. 89, 102506 (2006)

    Article  Google Scholar 

  10. P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V.M. Naik, M.B. Sahana, C. Sudakar, R. Naik, M.S.R. Rao, G. Lawes, J. Phys.: Condens. Matter 21, 036001 (2009)

    Google Scholar 

  11. O.D. Jayakumar, S.N. Achary, K.G. Girija, A.K. Tyagi, C. Sudakar, G. Lawes, R. Naik, J. Nisar, X. Peng, R. Ahuja, Appl. Phys. Lett. 96, 032903 (2010)

    Article  Google Scholar 

  12. Q. Zhang, C.H. Kim, Y.H. Jang, H.J. Hwang, J.H. Cho, Appl. Phys. Lett. 96, 152901 (2010)

    Article  Google Scholar 

  13. H. Deng, H.M. Deng, P.X. Yang, J.H. Chu, J. Mater. Sci.: Mater. Electron. 23, 1215–1218 (2012)

    Google Scholar 

  14. L.M. Kang, W. Zhang, Y. Sun, J. Ouyang, Phys. Status Solidi A 211, 565–569 (2014)

    Article  Google Scholar 

  15. T.K. Lee, K.D. Sung, T.H. Kim, J.H. Ko, J.H. Jung, J. Appl. Phys. 116, 194101 (2014)

    Article  Google Scholar 

  16. S.K. Pradhan, B.K. Roul, J. Phys. Chem. Solids 72, 1180–1187 (2011)

    Article  Google Scholar 

  17. S.K. Pradhan, J. Das, P.P. Rout, S.K. Das, D.K. Mishra, D.R. Sahu, A.K. Pradhan, V.V. Srinivasu, B.B. Nayak, S. Verma, B.K. Roul, J. Magn. Magn. Mater. 322, 3614–3622 (2010)

    Article  Google Scholar 

  18. S.K. Pradhan, J. Das, P.P. Rout, S.K. Das, S. Samantray, D.K. Mishra, D.R. Sahu, A.K. Pradhan, K. Zhang, V.V. Srinivasu, B.K. Roul, J. Alloys Compd. 509, 2645–2649 (2011)

    Article  Google Scholar 

  19. K. Chakrabarti, B. Sarkar, V.D. Ashok, S.S. Chaudhuri, S.K. De, J. Magn. Magn. Mater. 381, 271–277 (2015)

    Article  Google Scholar 

  20. L. Peng, H.M. Deng, J.J. Tian, Q. Ren, C. Peng, Z.P. Huang, P.X. Yang, J.H. Chu, Appl. Surf. Sci. 268, 146–150 (2013)

    Article  Google Scholar 

  21. D.H. Kuang, P. Tang, S.H. Yang, Y.L. Zhang, J. Sol-Gel. Sci. Technol. 73, 410–416 (2015)

    Article  Google Scholar 

  22. P. Tang, D.H. Kuang, S.H. Yang, Y.L. Zhang, J. Alloys Compd. 622, 194–199 (2015)

    Article  Google Scholar 

  23. E.K. Akdogan, C.J. Rawn, W.D. Porter, E.A. Payzant, A. Safari et al., J. Appl. Phys. 97, 084305 (2005)

    Article  Google Scholar 

  24. Y.S. Kim, D.H. Kim, J.D. Kim et al., Appl. Phys. Lett. 86, 102907 (2005)

    Article  Google Scholar 

  25. S. Baba, J. Akedo, J. Cryst. Growth 275, e1247–e1252 (2005)

    Article  Google Scholar 

  26. M.J. Chen, J.N. Ding, J.H. Qiu, N.Y. Yuan, Mater. Lett. 139, 325–328 (2015)

    Article  Google Scholar 

  27. S. Dutta, A. Pandey, I. Yadav, O.P. Thakur, R. Laishram, R. Pal, R. Chatterjee, J. Appl. Phys. 112, 084101 (2012)

    Article  Google Scholar 

  28. H. Yang, H. Wang, G.F. Zou, M. Jain, N.A. Suvorova, D.M. Feldmann, P.C. Dowden, R.F. DePaula, J.L. MacManus-Driscoll, A.J. Taylor, Q.X. Jia, Appl. Phys. Lett. 93, 142904 (2008)

    Article  Google Scholar 

  29. C. Wang, M. Takahashi, H. Fujino, X. Zhao, E. Kume, T. Horiuchi, S. Sakai, J. Appl. Phys. 99, 054104 (2006)

    Article  Google Scholar 

  30. X.D. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005)

    Article  Google Scholar 

  31. X. Xue, G.Q. Tan, H.F. Hao, H.J. Ren, Appl. Surf. Sci. 282, 432–438 (2013)

    Article  Google Scholar 

  32. G.W. Pabst, L.W. Martin, Y.H. Chu, R. Ramesh, J.L. MacManus-Driscoll, Appl. Phys. Lett. 90, 072902 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61176010 and 61172027, Guangdong Natural Science Foundation under Grant No. 2014A030311049, and the Research Foundation of IARC-SYSU under Grant No. IARC 2014-09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yueli Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuang, D., Tang, P., Wu, X. et al. Effects of sputtering power, buffer layer and film thickness on ferroelectric properties of sputtered Bi0.9Gd0.1Fe0.9Co0.1O3 films. J Mater Sci: Mater Electron 27, 10173–10179 (2016). https://doi.org/10.1007/s10854-016-5094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5094-0

Keywords

Navigation