Skip to main content
Log in

Sintering behavior and microwave dielectric properties of Y2O3–ZnO doped (Zr0.8Sn0.2)TiO4 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Zr0.8Sn0.2)TiO4 (ZST) ceramics were fabricated via conventional solid-state reaction method. Sintering behavior, phase composition, microstructure and microwave dielectric properties of Y2O3–ZnO doped ZST ceramics were investigated. Only a single ZST phase was identified by X-ray diffraction patterns. The variation tendencies of dielectric constants as well as Q × f values were in accordance with the bulk densities. The appropriate Y2O3 and ZnO additions could not only efficiently lower the sintering temperature to 1240 °C, but also noticeably improve the densification and microwave dielectric properties of ZST ceramics. But excessive additives deteriorated the microstructures and comprehensive properties of samples. A dielectric constant ε r of 39.73, a Q × f value of 48,545 GHz (at 5.5 GHz), and a τ f value of −2.13 ppm/°C were obtained for 1 wt% ZnO doped ZST ceramics with 0.5 wt% Y2O3 addition sintered at 1240 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Zhang, Y.G. Zhao, J. Alloys Compd. 654, 240 (2016)

    Article  Google Scholar 

  2. P. Zhang, Y.G. Zhao, Mater. Lett. 161, 620 (2015)

    Article  Google Scholar 

  3. R. Laishram, O.P. Thakur, J. Mater. Sci. Mater. Electron. 24, 3504 (2013)

    Article  Google Scholar 

  4. D. Pamu, G.L.N. Rao, K.C.J. Raju, J. Am. Ceram. Soc. 95(1), 126 (2012)

    Article  Google Scholar 

  5. Y. Higuchi, H. Tamura, J. Eur. Ceram. Soc. 23(14), 2683 (2003)

    Article  Google Scholar 

  6. J.X. Bi, C.H. Yang, H.T. Wu, J. Alloys Compd. 653, 1 (2015)

    Article  Google Scholar 

  7. S.M. Olhero, A. Kaushal, J.M.F. Ferreira, RSC Adv. 4, 48734 (2014)

    Article  Google Scholar 

  8. R. Laishram, O.P. Thakur, D.K. Bhattacharya, Mater. Lett. 65, 1678 (2011)

    Article  Google Scholar 

  9. A. Ioachim, M.G. Banciu, M.I. Toacsen, Appl. Surf. Sci. 253, 335 (2006)

    Article  Google Scholar 

  10. L.Z. Wang, L.X. Wang, Z.F. Wang et al., J. Mater. Sci. Mater. Electron. 26, 9026 (2015)

    Article  Google Scholar 

  11. D. Pamu, G.L.N. Rao, K.C.J. Raju, T. Indian, Ceram. Soc. 67(4), 211 (2008)

    Google Scholar 

  12. X.H. Zhou, Y.Q. Zhang, X.S. Yang et al., J. Mater. Sci. Mater. Electron. 26, 7683 (2015)

    Article  Google Scholar 

  13. H.R. Chen, Y.C. Lee, G.H. Chen et al., Ferroelectrics 434(1), 137 (2012)

    Article  Google Scholar 

  14. B. Tang, F. Si, Y.X. Li et al., J. Electron. Mater. 43(11), 3959 (2014)

    Article  Google Scholar 

  15. X.S. Lyu, L.X. Li, H. Sun et al., Ceram. Int. 42, 2036 (2016)

    Article  Google Scholar 

  16. W.T. Xie, H.Q. Zhou, H.K. Zhu et al., J. Mater. Sci. Mater. Electron. 26(6), 3515 (2015)

    Article  Google Scholar 

  17. N. Ichinose, T. Shimada, J. Eur. Ceram. Soc. 26, 1755 (2006)

    Article  Google Scholar 

  18. Y.B. Chen, C.L. Huang, S.T. Tasi, Mater. Lett. 62, 2454 (2008)

    Article  Google Scholar 

  19. D. Pamu, G.L.N. Rao, K.C.J. Raju, J. Alloys Compd. 475, 745 (2009)

    Article  Google Scholar 

  20. C.L. Huang, M.H. Weng, C.C. Wu et al., Jpn. J. Appl. Phys. 40, 698 (2001)

    Article  Google Scholar 

  21. H.C. Xiang, X.W. Jiang, L. Fang et al., J. Mater. Sci. Mater. Electron. 26, 9134 (2015)

    Article  Google Scholar 

  22. Y.B. Chen, C.L. Huang, S.H. Lin, Mater. Lett. 60, 3591 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the support of the fund by the Practice Innovation Program (2015) for University Graduate Students of Jiangsu Province (No. SJZZ15_0095), the Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD), Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites and the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_15R35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqing Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q., Zhou, H., Zhu, H. et al. Sintering behavior and microwave dielectric properties of Y2O3–ZnO doped (Zr0.8Sn0.2)TiO4 ceramics. J Mater Sci: Mater Electron 27, 7750–7754 (2016). https://doi.org/10.1007/s10854-016-4762-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4762-4

Keywords

Navigation