Skip to main content
Log in

CoY hexaferrite-PEEK composites for integrated and miniaturized RF components

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CoY hexaferrite-filled PEEK (poly ethyl ether ketone) composites were synthesized to characterize the effect of hexaferrites on their dielectric, magnetic and thermal properties for wireless sensing and communication applications. Fillers were synthesized from solid-state reaction route and blended with the thermoplastic polymer matrix. XRD was used to study the phase purity of the synthesised fillers. Impedance measurement showed permeability of ~2 with a loss tangent of 0.04 and frequency stability of permeability up to 800 MHz for higher filler loading. Dielectric property measurements using parallel-plate capacitance showed that the composites can attain a maximum dielectric constant up to 8 and a loss tangent of 0.005. Thermo mechanical Analyser was used to characterize the coefficient of linear thermal expansion (CTE) of the composites. The measured CTE closely matches that of organic substrates and copper, resulting in minimal CTE mismatch issues during processing and operation. VSM studies revealed soft magnetic characteristics of the composites. The results suggest the potential of this polymer composite substrate for integrated RF modules with miniaturized embedded passive components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Su, X. Tang, H. Zhang, Y. Jing, F. Bai, J. Electr. Mater. 43, 299 (2013). doi:10.1007/s11664-013-2831-5

    Article  Google Scholar 

  2. H. Mosallaei, K. Sarabandi, Antennas and Propagation. IEEE Trans. 52, 1558 (2004). doi:10.1109/TAP.2004.829413

    Article  Google Scholar 

  3. S. Rajesh, K.P. Murali, V. Priyadarsini, S.N. Potty, R. Ratheesh, P. Mohanan, Polym. Plast. Technol. Eng. 47, 242 (2008). doi:10.1080/03602550701866691

    Article  Google Scholar 

  4. J. Lee, J. Heo, J. Lee, Y. Han, IEEE Trans. Antennas Propag. 60, 2080 (2012). doi:10.1109/tap.2012.2186271

    Article  Google Scholar 

  5. C. Yonghun, L. Jungyub, L. Joonghee, IEEE Antennas Wirel. Propag. Lett. 11, 137 (2012). doi:10.1109/lawp.2012.2184517

    Article  Google Scholar 

  6. Y. Shirakata, N. Hidaka, M. Ishitsuka, A. Teramoto, T. Ohmi, IEEE Trans. Magn. 44, 2100 (2008). doi:10.1109/tmag.2008.2001073

    Article  Google Scholar 

  7. Y. Lin, H. Yang, J. Zhu, F. Wang, Int. J. Polym. Mater. 59, 570 (2010). doi:10.1080/00914031003760675

    Article  Google Scholar 

  8. V.G. Harris, Y. Chen, Z. Chen, A.L. Geiler, J. Jpn. Soc. Powder Powder Metall. 61, S273 (2014). doi:10.2497/jjspm.61.S273

    Article  Google Scholar 

  9. T. Tsutaoka, J. Appl. Phys. 93, 2789 (2003). doi:10.1063/1.1542651

    Article  Google Scholar 

  10. T. Tsutaoka, T. Kasagi, K. Hatakeyama, J. Eur. Ceram. Soc. 19, 1531 (1999). doi:10.1016/s0955-2219(98)00474-9

    Article  Google Scholar 

  11. T. Tsutaoka, T. Kasagi, K. Hatakeyama, J. Appl. Phys. 110, 053909 (2011). doi:10.1063/1.3626057

    Article  Google Scholar 

  12. R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012). doi:10.1016/j.pmatsci.2012.04.001

    Article  Google Scholar 

  13. M. Obol, C. Vittoria, J. Magn. Magn. Mater. 272–276, E1799 (2004). doi:10.1016/j.jmmm.2003.12.1116

    Article  Google Scholar 

  14. Y. Bai, J. Zhou, Z. Gui, L. Li, Mater. Lett. 58, 1602 (2004). doi:10.1016/j.matlet.2003.09.049

    Article  Google Scholar 

  15. N. Chawla, X. Deng, D. Schnell, Mater. Sci. Eng. A 426, 314 (2006)

    Article  Google Scholar 

  16. P.S. Turner, The Problem of Thermal-Expansion Stresses in Reinforced Plastics. (National Advisory Committee for Aeronautics, Washington, 1942)

    Google Scholar 

  17. E. Kerner, Proc. Phys. Soc. Sect. B 69, 808 (1956)

    Article  Google Scholar 

  18. R.A. Schapery, J. Compos. Mater. 2, 380 (1968)

    Article  Google Scholar 

  19. D. Ravinder, K.V. Kumar, B. Boyanov, Mater. Lett. 38, 22 (1999)

    Article  Google Scholar 

  20. H. Hatta, T. Takei, M. Taya, Mater. Sci. Eng. A 285, 99 (2000). doi:10.1016/S0921-5093(00)00721-8

    Article  Google Scholar 

  21. S. Ghabezloo, Constr. Build. Mater. 24, 1796 (2010). doi:10.1016/j.conbuildmat.2010.03.006

    Article  Google Scholar 

  22. I.J. Youngs, N. Bowler, K.P. Lymer, S. Hussain, J. Phys. D Appl. Phys. 38, 188 (2005)

    Article  Google Scholar 

  23. K.P. Murali, S. Rajesh, K.S. Jacob, O. Prakash, A.R. Kulkarni, R. Ratheesh, J. Mater. Sci. Mater. Electron. 21, 192 (2009). doi:10.1007/s10854-009-9892-5

    Article  Google Scholar 

  24. K.P. Murali, S. Rajesh, O. Prakash, A.R. Kulkarni, R. Ratheesh, Compos. A Appl. Sci. Manuf. 40, 1179 (2009). doi:10.1016/j.compositesa.2009.05.007

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Department of Electronics and Information Technology (DeitY), New Delhi for funding to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Markondeya Raj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murali, K.P., Markondeya Raj, P., Sharma, H. et al. CoY hexaferrite-PEEK composites for integrated and miniaturized RF components. J Mater Sci: Mater Electron 27, 7010–7017 (2016). https://doi.org/10.1007/s10854-016-4657-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4657-4

Keywords

Navigation