Skip to main content
Log in

Hierarchical 3D NiCo2O4 nanoflowers as electrode materials for high performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Three-dimensional NiCo2O4 nanoflowers have been directly grown on a stainless steel substrate surface, using a facile chemical bath deposition (CBD) technique. The deposited thin films were characterized for their structural, morphological and electrochemical properties by using XRD, SEM, cyclic voltammetry and charge discharge methods. The 3D NiCo2O4 nanoflowers were used as working electrode to measure the supercapacitor performance. The 3D NiCo2O4 nanoflowers exhibit high specific capacitance of 543 Fg−1 at current density 1 Ag−1. The capacitance loss was 9.4 % after 1000 cycles at a current density of 3 Ag−1. This shows a good cycle stability and high rate capability of 3D NiCo2O4 nanoflowers. From this investigation it can be concluded that the low cost and environmental friendly CBD technique could be used to deposit efficient 3D NiCo2O4 nanoflowers for supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Kuang, W. Zhang, X.L. Guo et al., Template-free and large-scale synthesis of hierarchical dandelion-like NiCo2O4 microspheres for high-performance supercapacitors. Ceram. Int. 40, 10005–10011 (2014). doi:10.1016/j.ceramint.2014.02.099

    Article  Google Scholar 

  2. Z. Lu, Q. Yang, W. Zhu et al., Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res. 5, 369–378 (2012). doi:10.1007/s12274-012-0217-2

    Article  Google Scholar 

  3. D. Gui, W. Chen, C. Liu, J. Liu, Graphene-like membrane supported MnO2 nanospheres for supercapacitor. J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-4403-y

    Google Scholar 

  4. R.B. Pujari, V.C. Lokhande, V.S. Kumbhar, N.R. Chodankar, C.D. Lokhande, Hexagonal microrods architectured MoO3 thin film for supercapacitor application. J. Mater. Sci.: Mater. Electron. (2015). doi:10.1007/s10854-015-4160-3

    Google Scholar 

  5. E. Jokar, A.I. Zad, S. Shahrokhian, Synthesis and characterization of NiCo2O4 nanorods for preparation of supercapacitor electrodes. J. Solid State Electrochem. 19, 269–274 (2014). doi:10.1007/s10008-014-2592-y

    Article  Google Scholar 

  6. K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani et al., Facile chemical synthesis of cobalt tungstates nanoparticles as high performance supercapacitor. J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-4329-4

    Google Scholar 

  7. H. Jiang, C. Li, T. Sun, J. Ma, High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanoflakes core–shell nanostructures. Chem. Commun. 48, 2606–2608 (2012). doi:10.1039/c2cc18079k

    Article  Google Scholar 

  8. M. Zhi, C. Xiang, J. Li et al., Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5, 72–88 (2013). doi:10.1039/c2nr32040a

    Article  Google Scholar 

  9. D.P. Dubal, A.D. Jagadale, S.V. Patil, C.D. Lokhande, Simple route for the synthesis of supercapacitive Co–Ni mixed hydroxide thin films. Mater. Res. Bull. 47, 1239–1245 (2012). doi:10.1016/j.materresbull.2012.01.026

    Article  Google Scholar 

  10. R.R. Salunkhe, K. Jang, H. Yu et al., Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. J. Alloys Compd. 509, 6677–6682 (2011). doi:10.1016/j.jallcom.2011.03.136

    Article  Google Scholar 

  11. P. Vigneshwaran, M. Kandiban, N. Senthil Kumar et al., A study on the synthesis and characterization of CoMn2O4 electrode material for supercapacitor applications. J. Mater. Sci.: Mater. Electron. (2016). doi:10.1007/s10854-016-4343-6

    Google Scholar 

  12. Y. Zhang, M. Ma, J. Yang et al., Selective synthesis of hierarchical mesoporous spinel NiCo2O4 for high-performance supercapacitors. Nanoscale 6, 4303–4308 (2014). doi:10.1039/c3nr06564b

    Article  Google Scholar 

  13. Y.Q. Wu, X.Y. Chen, P.T. Ji, Q.Q. Zhou, Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim. Acta 56, 7517–7522 (2011). doi:10.1016/j.electacta.2011.06.101

    Article  Google Scholar 

  14. G.Q. Zhang, WuH Bin, H.E. Hoster et al., Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. Energy Environ. Sci. 5, 9453–9456 (2012). doi:10.1039/c2ee22572g

    Article  Google Scholar 

  15. M.C. Liu, L.B. Kong, C. Lu et al., A Sol–Gel process for the synthesis of NiCo2O4 having improved specific capacitance and cycle stability for electrochemical capacitors. J. Electrochem. Soc. 159, A1262–A1266 (2012). doi:10.1149/2.057208jes

    Article  Google Scholar 

  16. B. Cui, H. Lin, J.B. Li et al., Core-ring structured NiCo2O4 nanoplatelets: synthesis, characterization, and electrocatalytic applications. Adv. Funct. Mater. 18, 1441–1447 (2008). doi:10.1002/adfm.200700982

    Google Scholar 

  17. R. Ding, L. Qi, M. Jia, H. Wang, Hydrothermal and soft-templating synthesis of mesoporous NiCo2O4 nanomaterials for high-performance electrochemical capacitors. J. Appl. Electrochem. 43, 903–910 (2013). doi:10.1007/s10800-013-0580-z

    Article  Google Scholar 

  18. T. Wang, H. Zhang, H. Luo et al., Controlled synthesis of NiCo2O4 nanowires and nanosheets on reduced graphene oxide nanosheets for supercapacitors. J. Solid State Electrochem. (2015). doi:10.1007/s10008-015-2940-6

    Google Scholar 

  19. T.Y. Wei, C.H. Chen, H.C. Chien et al., A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 22, 347–351 (2010). doi:10.1002/adma.200902175

    Article  Google Scholar 

  20. H. Wang, Q. Gao, L. Jiang, Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 7, 2454–2459 (2011)

    Google Scholar 

  21. L. Li, S. Peng, Y. Cheah et al., Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chem. A Eur. J. 19, 5892–5898 (2013). doi:10.1002/chem.201204153

    Article  Google Scholar 

  22. G. Zhang, X.W. Lou, General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv. Mater. 25, 976–979 (2013). doi:10.1002/adma.201204128

    Article  Google Scholar 

  23. Q. Wang, B. Liu, X. Wang et al., Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as pseudocapacitors and photoelectrochemical cells. J. Mater. Chem. 22, 21647–21653 (2012). doi:10.1039/c2jm34705a

    Article  Google Scholar 

  24. C.T. Hsu, C.C. Hu, Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors. J. Power Sources 242, 662–671 (2013). doi:10.1016/j.jpowsour.2013.05.130

    Article  Google Scholar 

  25. J. Chang, J. Sun, C. Xu et al., Template-free approach to synthesize hierarchical porous nickel cobalt oxides for supercapacitors. Nanoscale 4, 6786–6791 (2012). doi:10.1039/c2nr31725g

    Article  Google Scholar 

  26. C. Yuan, J. Li, L. Hou et al., Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv. Funct. Mater. 22, 4592–4597 (2012). doi:10.1002/adfm.201200994

    Article  Google Scholar 

  27. J. Pu, J. Wang, X. Jin et al., Porous hexagonal NiCo2O4 nanoplates as electrode materials for supercapacitors. Electrochim. Acta 106, 226–234 (2013). doi:10.1016/j.electacta.2013.05.092

    Article  Google Scholar 

  28. I. Shakir, M. Sarfraz, U.A. Rana et al., Synthesis of hierarchical porous spinel nickel cobaltite nanoflakes for high performance electrochemical energy storage supercapacitors. RSC Adv. 3, 21386–21389 (2013). doi:10.1039/c3ra43973a

    Article  Google Scholar 

  29. C.D. Lokhande, A.M. More, J.L. Gunjakar, Microstructure dependent performance of chemically deposited nanocrystalline metal oxide thin films. J. Alloys Compd. 486, 570–580 (2009). doi:10.1016/j.jallcom.2009.07.009

    Article  Google Scholar 

  30. R.R. Salunkhe, D.S. Dhawale, U.M. Patil, C.D. Lokhande, Improved response of CdO nanorods towards liquefied petroleum gas (LPG): effect of Pd sensitization. Sens. Actuators B Chem. 136, 39–44 (2009). doi:10.1016/j.snb.2008.10.048

    Article  Google Scholar 

  31. U.M. Patil, S.B. Kulkarni, V.S. Jamadade, C.D. Lokhande, Chemically synthesized hydrous RuO2 thin films for supercapacitor application. J. Alloys Compd. 509, 1677–1682 (2011). doi:10.1016/j.jallcom.2010.09.133

    Article  Google Scholar 

  32. T. Zhu, E.R. Koo, G.W. Ho, Shaped-controlled synthesis of porous NiCo2O4 with 1–3 dimensional hierarchical nanostructures for high-performance supercapacitors. RSC Adv. 5, 1697–1704 (2015). doi:10.1039/C4RA14099K

    Article  Google Scholar 

  33. N. Padmanathan, S. Selladurai, Controlled growth of spinel NiCo2O4 nanostructures on carbon cloth as a superior electrode for supercapacitors. RSC Adv. 4, 8341–8349 (2014). doi:10.1039/C3RA46399K

    Article  Google Scholar 

  34. L. Shen, Q. Che, H. Li, X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv. Funct. Mater. 24, 2630–2637 (2014). doi:10.1002/adfm.201303138

    Article  Google Scholar 

  35. U.M. Patil, J.S. Sohn, S.B. Kulkarni et al., Enhanced supercapacitive performance of chemically grown cobalt–nickel hydroxides on three-dimensional graphene foam electrodes. ACS Appl. Mater. Interfaces 6, 2450–2458 (2014). doi:10.1021/am404863z

    Article  Google Scholar 

  36. C. Zhang, T. Kuila, N.H. Kim et al., Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor electrodes. Carbon 89, 328–339 (2015). doi:10.1016/j.carbon.2015.03.051

    Article  Google Scholar 

  37. D. Kong, W. Ren, C. Cheng et al., Three-dimensional NiCo2O4@ polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor. ACS Appl. Mater. Interfaces 7, 21334–21346 (2015). doi:10.1021/acsami.5b05908

    Article  Google Scholar 

  38. G. Zhang, X.W. David Lou, Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci. Rep. 3, 1470–1475 (2013). doi:10.1038/srep01470

    Google Scholar 

  39. R.R. Salunkhe, K. Jang, S. Lee, H. Ahn, Aligned nickel–cobalt hydroxide nanorod arrays for electrochemical pseudocapacitor applications. RSC Adv. 2, 3190–3193 (2012). doi:10.1039/c2ra01220k

    Article  Google Scholar 

  40. M. Kuang, Y.X. Zhang, T.T. Li et al., Tunable synthesis of hierarchical NiCo2O4 nanosheets-decorated Cu/CuOx nanowires architectures for asymmetric electrochemical capacitors. J. Power Sources 283, 270–278 (2015). doi:10.1016/j.jpowsour.2015.02.117

    Article  Google Scholar 

Download references

Acknowledgments

Both authors are thankful to Department of Physics, Yashwantrao Chavan Institute of Science, Satara, for providing laboratory facilities to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Torane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waghmode, R.B., Torane, A.P. Hierarchical 3D NiCo2O4 nanoflowers as electrode materials for high performance supercapacitors. J Mater Sci: Mater Electron 27, 6133–6139 (2016). https://doi.org/10.1007/s10854-016-4540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4540-3

Keywords

Navigation