Skip to main content

Advertisement

Log in

Facile synthesis of three-dimensional reinforced Sn@polyaniline/sodium alginate nanofiber hydrogel network for high performance lithium-ion battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An innovative three-dimensional (3D) Sn@ polyaniline (PANI)/sodium alginate (SA) nanofiber hydrogel is designed as high performance anode for lithium-ion batteries. The nanofiber conductive hydrogel was successfully synthesized via in situ polymerization of aniline in an aqueous solution of Sn nanoparticles (NPs) and SA. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of Sn@PANI/SA. It was found that the 3D porous nanofiber hydrogel network was generated by the entanglement of PANI and SA chains and Sn NPs were embedded homogeneously inside. Because there are strong hydrogen bonding interactions between PANI and SA, SA has a remarkable reinforcement effect on PANI. And Sn@PANI/SA electrode exhibits more stable structure and better electrochemical performance than the Sn@PANI electrode. The galvanostatic charge/discharge profiles exhibit better reversible capacity (616 mAh g−1 after 100 cycles), more excellent rate capability and higher coulomb efficiency than those of the Sn@PANI electrodes indicating that such a reinforced hydrogel network has great application values on the anode materials of lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Scrosati, J. Garche, J. Power Sour. 195, 2419 (2010)

    Article  Google Scholar 

  2. T.-H. Kim, J.-S. Park, S.K. Chang, S. Choi, J.H. Ryu, H.-K. Song, Adv. Energy Mater. 2, 860 (2012)

    Article  Google Scholar 

  3. N. Nitta, F.X. Wu, J.T. Lee, G. Yushin, Mater. Today 18, 252 (2015)

    Article  Google Scholar 

  4. H.H. Wang, H.R. Peng, G.C. Li, K.Z. Chen, Chem. Eng. J. 275, 160 (2015)

    Article  Google Scholar 

  5. G. Kilibarda, S. Schlabach, V. Winkler, M. Bruns, T. Hanemann, D.V. Szabó, J. Power Sour. 263, 145 (2014)

    Article  Google Scholar 

  6. Y.N. Li, X.H. Hou, J.Y. Wang, J.W. Mao, Y.M. Gao, S.J. Hu, J. Mater. Sci.: Mater. Electron. 26, 7507 (2015)

    Google Scholar 

  7. A.D.W. Todd, P.P. Ferguson, M.D. Fleischauer, J.R. Dahn, Energy Res. 34, 536 (2010)

    Article  Google Scholar 

  8. Y.H. Xu, Q. Liu, Y.J. Zhu, Y.H. Liu, A. Langrock, M.R. Zachariah, C.S. Wang, Nano Lett. 13, 470 (2013)

    Article  Google Scholar 

  9. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 407, 496 (2000)

    Article  Google Scholar 

  10. C.K. Chan, R.N. Patel, M.J. O’Connell, B.A. Korgel, Y. Cui, ACS Nano 4, 1443 (2010)

    Article  Google Scholar 

  11. N. Li, H.W. Song, H. Cui, G.W. Yang, C.X. Wang, J. Mater. Chem. A 2, 2526 (2014)

    Article  Google Scholar 

  12. Z.Q. Zhu, S.W. Wang, J. Du, Q. Jin, T.R. Zhang, F.Y. Cheng, J. Chen, Nano Lett. 14, 153 (2014)

    Article  Google Scholar 

  13. D.Q. Ma, P. Bi, H.W. Meng, X.H. Yu, P. Dou, H.Y. Yang, Y.L. Sun, Z.Z. Cao, J. Zheng, C. Wang, X.H. Xu, J. Mater. Sci.: Mater. Electron. 26, 7523 (2015)

    Google Scholar 

  14. X. Pan, J.W. Zhu, X. Wang, J. Power Sour. 294, 32 (2015)

    Google Scholar 

  15. K. Wang, H.P. Wu, Y.N. Meng, Z.X. Wei, Small 10, 15 (2014)

    Google Scholar 

  16. Y. Zhao, B.R. Liu, L.J. Pan, G.H. Yu, Energy Environ. Sci. 6, 2860 (2013)

    Google Scholar 

  17. G.H. Yu, X. Xie, L.J. Pan, Z.N. Bao, Y. Cui, Nano Energy 2, 222 (2013)

    Google Scholar 

  18. J.T. Zhang, X.S. Zhao, J. Phys. Chem. C 116, 5423 (2012)

    Google Scholar 

  19. J.L. Liu, W.W. Zhou, L.F. Lai, H.P. Yang, S.H. Lim, Y.D. Zhen, T. Yu, Z.X. Shen, J.Y. Lin, Nano Energy 2, 728 (2013)

    Google Scholar 

  20. Y.L. Liang, Z.L. Tao, J. Chen, Adv. Energy Mater. 2, 758 (2012)

    Google Scholar 

  21. H.G. Wei, J.H. Zhu, S.J. Wu, S.Y. Wei, Z.H. Guo, Polymer 54, 1820 (2013)

    Article  Google Scholar 

  22. A. Imani, G. Farzi, J. Mater. Sci.: Mater. Electron. 26, 7438 (2015)

    Google Scholar 

  23. M.Y. Feng, J.H. Tian, H.M. Xie, Y.L. Kang, Z.Q. Shan, J. Sol. State Electrochem. 19, 1773 (2015)

    Article  Google Scholar 

  24. G. Saito, C.Y. Zhu, T. Akiyama, Adv. Powder Technol. 25, 730 (2014)

    Google Scholar 

  25. N.S. Choi, Y. Yao, Y. Cui, J. Cho, J. Mater. Chem. 21, 9826 (2011)

    Google Scholar 

  26. H.S. Hou, X.N. Tang, M.Q. Guo, Y.Q. Shi, P. Dou, X.H. Xu, Mater. Lett. 128, 408 (2014)

    Article  Google Scholar 

  27. Y. Zhong, X.F. Li, Y. Zhang, R.Y. Li, M. Cai, X.L. Sun, Appl. Surf. Sci. 332, 193 (2015)

    Google Scholar 

  28. R. Liu, J. Duay, S.B. Lee, Chem. Commun. 47, 1397 (2011)

    Google Scholar 

  29. J.N. Tiwari, R.N. Tiwari, K.S. Kim, Prog. Mater Sci. 57, 794 (2012)

    Article  Google Scholar 

  30. B.L. Ellis, P. Knauth, T. Djenizian, Adv. Mater. 26, 3370 (2014)

    Article  Google Scholar 

  31. Y.P. Tang, X.X. Tan, G.Y. Hou, H.Z. Cao, G.Q. Zheng, Electrochim. Acta 78, 155 (2012)

    Google Scholar 

  32. J.S. Luo, J.L. Liu, Z.Y. Zeng, C.F. Ng, L.J. Ma, H. Zhang, J.Y. Lin, Z.X. Shen, H.J. Fan, Nano Lett. 13, 6137 (2013)

    Google Scholar 

  33. P. Wu, H. Wang, Y.W. Tang, Y.M. Zhou, T.H. Lu, A.C.S. Appl, Mater. Interfaces 6, 3547 (2014)

    Google Scholar 

  34. J.S. Luo, J.L. Liu, Z.Y. Zeng, C.F. Ng, L.J. Ma, H. Zhang, J.Y. Lin, Z.X. Shen, H.J. Fan, Acc. Chem. Res. 45, 1764 (2012)

    Google Scholar 

  35. K. Wang, X. Zhang, C. Li, H.T. Zhang, X.Z. Sun, N.S. Xu, Y.W. Ma, J. Mater. Chem. A 2, 19729 (2014)

    Google Scholar 

  36. X. Fan, A.N. Jiang, P. Dou, D.Q. Ma, X.H. Xu, RSC Adv. 4, 52075 (2014)

    Google Scholar 

  37. K.C. Hsu, C.E. Liu, P.C. Chen, C.Y. Lee, H.T. Chiu, J. Mater. Chem. 22, 21537 (2012)

    Google Scholar 

  38. H.T. Guo, W.N. He, X. Lu, X.T. Zhang, Carbon 92, 135 (2015)

    Article  Google Scholar 

  39. D.N. Wang, X.F. Li, J.L. Yang, J.J. Wang, D.S. Geng, R.Y. Li, M. Cai, T.K. Sham, X.L. Sun, Phys. Chem. Chem. Phys. 15, 3535 (2013)

    Article  Google Scholar 

  40. L.L. Chai, Q.T. Qu, L.F. Zhang, M. Shen, L. Zhang, H.H. Zheng, Electrochim. Acta 105, 381 (2013)

    Article  Google Scholar 

  41. L. Zhang, L.Y. Zhang, L.L. Chai, P. Xue, W.W. Hao, H.H. Zheng, J. Mater. Chem. A 2, 19043 (2014)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (No. 51273145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Yu, X., Wang, C. et al. Facile synthesis of three-dimensional reinforced Sn@polyaniline/sodium alginate nanofiber hydrogel network for high performance lithium-ion battery. J Mater Sci: Mater Electron 27, 4457–4464 (2016). https://doi.org/10.1007/s10854-016-4317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4317-8

Keywords

Navigation