Skip to main content
Log in

Temperature dependence of Raman spectra of graphene on copper foil substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We investigate the temperature dependence of the phonon frequencies of the G and 2D modes in the Raman spectra of monolayer graphene grown on copper foil by chemical vapor deposition. The Raman spectroscopy is carried out under a 532.16 nm laser excitation over the temperature range from 150 to 390 K. Both the G and 2D modes exhibit significant red shift as temperature increases, and the extracted values of temperature coefficients of G and 2D modes are −0.101 and −0.180 cm−1 K−1, respectively, different from that of graphene on SiO2 substrate. The obtained results shed light on the anharmonic property of graphene, the complex interfacial interactions between graphene and the underlying copper foil substrate as temperature changes, and also proposes a new routine to estimate the thermal expansion coefficient of graphene on copper substrate rather than on SiO2 and SiN substrates. Furthermore, our work is instructive to study the similar temperature dependent mechanical properties, and the interfacial interactions between the other emerging two dimensional materials and their underlying substrates by temperature dependent Raman scatterings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  Google Scholar 

  2. J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. van der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Nano Lett. 8, 2458 (2008)

    Article  Google Scholar 

  3. S. Zhou, A. Bongiorno, Sci. Rep. 3, 2484 (2013)

    Google Scholar 

  4. E.R. Margine, M.L. Bocquet, X. Blase, Nano Lett. 8, 3315 (2008)

    Article  Google Scholar 

  5. X. Huang, X. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666 (2012)

    Article  Google Scholar 

  6. T. Jayasekera, J.W. Mintmire, Nanotechnology 18, 424033 (2007)

    Article  Google Scholar 

  7. J.X. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Small 10, 3480 (2014)

    Article  Google Scholar 

  8. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R.S. Ruoff, Science 324, 1312 (2009)

    Article  Google Scholar 

  9. J.W. Suk, A. Kitt, C.W. Magnuson, Y. Hao, S. Ahmed, J. An, R.S. Ruoff, ACS Nano 5, 6916 (2011)

    Article  Google Scholar 

  10. X. Yu, J. Tao, Y. Shen, G. Liang, T. Liu, Y. Zhang, Q.J. Wang, Nanoscale 6, 9925 (2014)

    Article  Google Scholar 

  11. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  Google Scholar 

  12. M. Huang, H. Yan, C. Chen, D. Song, T.F. Heinz, J. Hone, Proc. Natl. Acad. Sci. 106, 7304 (2009)

    Article  Google Scholar 

  13. L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Rep. 473, 51 (2009)

    Article  Google Scholar 

  14. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, C. Casiraghi, Nano Lett. 12, 3925 (2012)

    Article  Google Scholar 

  15. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, A.C. Ferrari, Phys. Rev. B 79, 205433 (2009)

    Article  Google Scholar 

  16. J.U. Lee, D. Yoon, H. Kim, S.W. Lee, H. Cheong, Phys. Rev. B 83, 081419 (2011)

    Article  Google Scholar 

  17. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)

    Article  Google Scholar 

  18. J.E. Lee, G. Ahn, J. Shim, Y.S. Lee, S. Ryu, Nat. Commun. 3, 1024 (2012)

    Article  Google Scholar 

  19. A. Zandiatashbar, G.H. Lee, S.J. An, S. Lee, N. Mathew, M. Terrones, N. Koratkar, Nat. Commun. 5, 3186 (2014)

    Article  Google Scholar 

  20. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Nano Lett. 7, 2645 (2007)

    Article  Google Scholar 

  21. D. Yoon, Y.W. Son, H. Cheong, Nano Lett. 11, 3227 (2011)

    Article  Google Scholar 

  22. S. Linas, Y. Magnin, B. Poinsot, O. Boisron, G.D. Förster, V. Martinez, F. Calvo, Phys. Rev. B 91, 075426 (2015)

    Article  Google Scholar 

  23. R. He, L. Zhao, N. Petrone, K.S. Kim, M. Roth, J. Hone, A. Pinczuk, Nano Lett. 12, 2408 (2012)

    Article  Google Scholar 

  24. N. Bonini, M. Lazzeri, N. Marzari, F. Mauri, Phys. Rev. Lett. 99, 176802 (2007)

    Article  Google Scholar 

  25. D. Yoon, Y.W. Son, H. Cheong, Phys. Rev. Lett. 106, 155502 (2011)

    Article  Google Scholar 

  26. R.J. Yong, L. Gong, I.A. Kinloch, I. Riaz, R. Jalil, K.S. Novoselov, ACS Nano 5, 3079 (2011)

    Article  Google Scholar 

  27. L. Gong, I.A. Kinloch, R.J. Yong, I. Riaz, R. Jalil, K.S. Novoselov, Adv. Mater. 22, 2694 (2010)

    Article  Google Scholar 

  28. S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, J. Phys. Chem. B 110, 8535 (2006)

    Google Scholar 

  29. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, B.H. Hong, Nature 457, 706 (2009)

    Article  Google Scholar 

  30. R. Sahin, E. Simsek, S. Akturk, Appl. Phys. Lett. 104, 053118 (2014)

    Article  Google Scholar 

  31. V. Carozo, C.M. Almeida, E.H. Ferreira, L.G. Cancado, C.A. Achete, A. Jorio, Nano Lett. 11, 4527 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Basic Research (973) from Ministry of Science and Technology with Contract Number of 2011CB309504. Authors are also grateful to the Analytical and Testing Center, Huazhong University of Science and Technology for technical assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Peng, Q., Dai, Y. et al. Temperature dependence of Raman spectra of graphene on copper foil substrate. J Mater Sci: Mater Electron 27, 3888–3893 (2016). https://doi.org/10.1007/s10854-015-4238-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4238-y

Keywords

Navigation