Skip to main content
Log in

Retrieval of optical constants of undoped amorphous selenium films from an analysis of their normal-incidence transmittance spectra using numeric PUMA method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The as-measured room-temperature normal-incidence transmittance–wavelength (T exp(λ) − λ) spectra of undoped amorphous selenium (a-Se) films, which were thermally deposited onto glass slides, exhibit well-resolved interference-fringe maxima and minima λ > λ c (≈630 nm), below which they fall rather sharply to zero transmittance. In the transparency and weak absorption region, the maxima transmittance is close to the substrate transmission, implying good uniformity of the a-Se films. The geometric thicknesses of the films and the spectral dependency of their optical constants n(λ) and κ(λ) were retrieved by analyzing the T exp(λ) − λ spectra by the PUMA method, based on the full T(λ)-formula for air-supported {uniform thin film/thick transparent substrate}-stacks, without the need for dispersion relations in prior and regardless of the number of interference fringes. The n(λ) − λ data of the transparency and weak absorption regions were found to fit the Wemple–DiDomenico and modified Sellmeier dispersion relations. The ω-dependency of the absorption coefficient α(ω) in the absorption-edge region has been analyzed in view of various interband transition models and was found to be nearly described by the linear power-law relation \(\alpha \hbar \omega \propto \hbar \omega - E_{\text{g}}\), with E g ≈ 2.2 eV over a broad spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.O. Kasap, J.A. Rowlands, J. Mater. Sci. Mater. Electron. 11, 179 (2000)

    Article  Google Scholar 

  2. S. Kasap, J.B. Frey, G. Belev, O. Tousignant, H. Mani, J. Greenspan, L. Laperriere, O. Bubon, A. Reznik, G. DeCrescenzo, K.S. Karim, J.A. Rowlands, Sensors 11, 5112 (2011)

    Article  Google Scholar 

  3. K. Wang, F. Chen, K.-W. Shin, N. Allec, K.S. Karim, Proc. SPIE 7622, 762217 (2010)

    Article  Google Scholar 

  4. J.C. Bernede, S. Touihri, G. Safoula, Solid State Electron. 42, 1775 (1998)

    Article  Google Scholar 

  5. S.E. Iyayi, A.A. Oberafo, J. Appl. Sci. Environ. Manag. 9, 143 (2005)

    Google Scholar 

  6. S.M. Yoon, N.Y. Lee, S.O. Ryu, K.J. Choi, Y.S. Park, S.Y. Lee, B.G. Yu, M.-J. Kang, S.-Y. Choi, M. Wuttig, IEEE Electron Dev. Lett. 27, 444 (2006)

    Google Scholar 

  7. M.M. Hafiz, O. El-Shazly, N. Kinawy, Appl. Surf. Sci. 171, 231 (2001)

    Article  Google Scholar 

  8. R. Swanepoel, J. Phys. E Sci. Instrum. 16, 1214 (1983)

    Article  Google Scholar 

  9. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  10. M.M. Abdul-Gader Jafar, Eur. Int. J. Sci. Technol. 2, 274 (2013)

    Google Scholar 

  11. I. Chambouleyron, J.M. Martínez, Optical properties of dielectric and semiconductor thin films, in Handbook of Thin Films Materials, vol. 3, ed. by H.S. Nalwa (Academic Press, New York, 2001)

    Google Scholar 

  12. S. Kasap, C. Koughia, J. Singh, H. Ruda, S. O’Leary, in Springer Handbook of Electronic and Photonic Materials, Chapter 3, ed. by S. Kasap, P. Capper (Springer, Berlin, 2006)

    Google Scholar 

  13. O.S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1991)

    Google Scholar 

  14. L. Ward, The Optical Constants of Bulk Materials and Films, 2nd edn. (Institute of Physics Publishing, Bristol, 1994)

    Google Scholar 

  15. D. Dragoman, M. Dragoman, Optical Characterization of Solids (Springer, Berlin, 2002)

    Book  Google Scholar 

  16. E.G. Birgin, I. Chambouleyron, J.M. Martinez, J. Comp. Phys. 151, 862 (1999)

    Article  Google Scholar 

  17. M. Mulato, I. Chambouleyron, E.G. Birgin, J.M. Martínez, Appl. Phys. Lett. 77, 2133 (2000)

    Article  Google Scholar 

  18. S.D. Ventura, E.G. Birgin, J.M. Martinez, I. Chambouleyron, J. Appl. Phys. 97, 043512 (2005)

    Article  Google Scholar 

  19. N. Erarslan, T. Gungor, J. Grad. Sch. Nat. Appl. Sci. Mehmet Akif Ersoy Univ. 1, 181 (2010)

    Google Scholar 

  20. D. Poelman, P.F. Smet, J. Phys. D Appl. Phys. 36, 1850 (2003)

    Article  Google Scholar 

  21. M. Kukinyi, N. Benkö, A. Grofcsik, W.J. Jones, Thin Solid Films 286, 164 (1996)

    Article  Google Scholar 

  22. W. Theiss, Hard- and Software (Manual), (http://www.mtheiss.com)

  23. J.A. Dobrowolski, F.C. Ho, A. Waldorf, Appl. Opt. 22, 3191 (1983)

    Article  Google Scholar 

  24. W.E. Case, Appl. Opt. 22, 1832 (1983)

    Article  Google Scholar 

  25. C.H. Peng, S.B. Desu, J. Am. Ceram. Soc. 77, 929 (1994)

    Article  Google Scholar 

  26. T. Innami, S. Adachi, Phys. Rev. B 60, 8284 (1999)

    Article  Google Scholar 

  27. W.C. Tan, G. Belev, K. Koughia, R. Johanson, S.K. O’Leary, S. Kasap, J. Mater. Sci. Mater. Electron. 18, S429 (2007)

    Article  Google Scholar 

  28. W.C. Tan, Optical Properties of Amorphous Selenium Films. M.Sc. Thesis, (University of Saskatchewan, Saskatoon, Canada, 2006)

  29. W.C. Tan, K. Koughia, J. Singh, S.O. Kasap, in Optical Properties of Condensed Matter and Applications, Chapter 1, ed. by J. Singh (Wiley, London, 2006)

    Google Scholar 

  30. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  31. A. Solieman, A.A. Abu-Sehly, Phys. B 405, 1101 (2010)

    Article  Google Scholar 

  32. G. Navarrete, H. Marquez, L. Cota, J. Siqueiros, R. Machorro, Appl. Opt. 29, 2850 (1990)

    Article  Google Scholar 

  33. M.H. Saleh, M.M. Abdul-Gader Jafar, B.N. Bulos, T.M.F. Al-Daraghmeh, Appl. Phys. Res. 6, 10 (2014)

    Article  Google Scholar 

  34. P. Nagels, E. Sleeckx, R. Callaerts, L. Tichy, Solid State Commun. 94, 49 (1995)

    Article  Google Scholar 

  35. P. Nagels, E. Sleeckx, R. Callaerts, E. Marquez, J.M. Gonzalez, A.M. Bernal-Oliva, Solid State Commun. 102, 539 (1997)

    Article  Google Scholar 

  36. L. Tichy, H. Ticha, P. Nagels, E. Sleeckx, R. Callaerts, Mater. Lett. 26, 279 (1996)

    Article  Google Scholar 

  37. H. Adachi, K.C. Kao, J. Appl. Phys. 51, 6326 (1980)

    Article  Google Scholar 

  38. T. Innami, T. Miyazaki, S. Adachi, J. Appl. Phys. 86, 1382 (1999)

    Article  Google Scholar 

  39. M.F. Kotkata, F.A. Abdel-Wahab, J. Mater. Sci. 25, 2379 (1990)

    Article  Google Scholar 

  40. M.F. Kotkata, F.A. Abdel-Wahab, M.S. Al-Kotb, Appl. Surf. Sci. 255, 9071 (2009)

    Article  Google Scholar 

  41. K. Shimakawa, J. Singh, S.K. O’Leary, in Optical Properties of Condensed Matter and Applications, Chapter 3, ed. by J. Singh (Wiley, London, 2006)

    Google Scholar 

  42. A.A. Mulama, J.M. Mwabora, A.O. Oduor, C.C. Muiva, Afr. Rev. Phys. 9, 33 (2014)

    Google Scholar 

  43. A.A. Mulama, J.M. Mwabora, A.O. Oduor, C.C. Muiva, B. Muthoka, B.N. Amukayia, D.A. Mbete, New J. Glass Ceram. 5, 16 (2015)

    Article  Google Scholar 

  44. K. Bindu, M. Lakshmi, S. Bini, C.S. Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, Semicond. Sci. Technol. 17, 270 (2002)

    Article  Google Scholar 

  45. R. Bettsteller, H. Witte, W. Herms, H. Frreistedt, Solid State Commun. 87, 763 (1993)

    Article  Google Scholar 

  46. J.P. Larmagnac, J. Grenet, P. Michon, J. Non-Crystal. Solids 45, 157 (1981)

    Article  Google Scholar 

  47. S.O. Kasap, V. Aiyah, S. Yannacopoulos, J. Phys. D Appl. Phys. 23, 553 (1990)

    Article  Google Scholar 

  48. D. Tonchev, S.O. Kasap, Mater. Sci. Eng. A 328, 62 (2002)

    Article  Google Scholar 

  49. R. Swanepoel, J. Phys. E: Sci. Instrum. 17, 896 (1984)

    Article  Google Scholar 

  50. B.S. Richards, Optical Characterization of Sputtered Silicon Thin Films for Photovoltaic Application. M.Sc. Thesis, (University of New South Wales, Australia 1998)

  51. E. Márquez, J.B. Ramirez-Malo, P. Villares, R. Jiménez-Garay, R. Swanepoel, Thin Solid Films 254, 83 (1995)

    Article  Google Scholar 

  52. E. Márquez, P. Nagels, J.M. Gonzalez-Leal, A.M. Bernal-Oliva, E. Sleeckx, R. Callaerts, Vacuum 52, 55 (1999)

    Article  Google Scholar 

  53. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

    Article  Google Scholar 

  54. S.K. O’Leary, S.R. Johnson, P.K. Lim, J. Appl. Phys. 82, 3334 (1997)

    Article  Google Scholar 

  55. G.F. Bassani, G.P. Parravicini, Electronic States and Optical Transitions in Solids (Science of Solid State Monographs), Chapter 5, (Pergamon Press, 1975)

  56. G.E. Jellison, F.A. Modine, Appl. Phys. Lett. 69, 371 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the permission to use PUMA program (free online at http://www.ime.usp.br/~egbirgin/puma).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mousa M. Abdul-Gader Jafar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafar, M.M.AG., Saleh, M.H., Ahmad, M.J.A. et al. Retrieval of optical constants of undoped amorphous selenium films from an analysis of their normal-incidence transmittance spectra using numeric PUMA method. J Mater Sci: Mater Electron 27, 3281–3291 (2016). https://doi.org/10.1007/s10854-015-4156-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4156-z

Keywords

Navigation