Skip to main content
Log in

Effect of substrate temperature and bias voltage on the properties in DC magnetron sputtered AlN films on glass substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

AlN films have been deposited on glass substrates at various growth conditions by DC reactive magnetron sputtering. The AlN film deposited at 300 °C shows a strongly c-axis preferred orientation with a high thermal conductivity of 12.5 W/mk. The evolution of c-axis preferential orientation, morphology, growth rate and residual stress as well as thermal conductivity of the synthesized films are investigated as a function of sputtering parameters. The crystalline quality of the films gradually improves to highly c-axis orientation as the substrate temperature increased to 300 °C. The deposition rate enhances with the substrate temperature increased or the negative bias voltage was applied. The surface roughness of the AlN films would be reduced due to the moderately increased substrate temperature or enhanced N2/Ar ratio. Moreover, it is found that high temperature and high negative bias voltage are able to grow AlN films with compressive residual stress, and the thermal conductivity of the films are improved with the increase of film thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.K. Lee, S. Cochran, A. Abrar, K.J. Kirk, F. Placido, Ultrasonics 42, 485–490 (2004)

    Article  Google Scholar 

  2. M.B. Assouar, O. Elmazria, M. Elhakiki, P. Alnot, J. Vac. Sci. Technol. B 22, 1717 (2004)

    Article  Google Scholar 

  3. Y. Taniyasu, M. Kasu, T. Makimoto, Nature 441, 325–328 (2006)

    Article  Google Scholar 

  4. O. Elmazria, V. Mortet, M. El Hakiki, M. Nesladek, P. Alnot, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 710–715 (2003)

    Article  Google Scholar 

  5. W.S. Yan, R. Zhang, X.Q. Xiu, Z.L. Xie, P. Han, R.L. Jiang, S.L. Gu, Y. Shi, Y.D. Zheng, Appl. Phys. Lett. 90, 212102–212104 (2007)

    Article  Google Scholar 

  6. D.V. Dinh, M. Conroy, V.Z. Zubialevich, N. Petkov, J.D. Holmes, P.J. Parbrook, J. Cryst. Growth 414, 94–99 (2015)

    Article  Google Scholar 

  7. T. Kehagias, L. Lahourcade, A. Lotsari, E. Monroy, G.P. Dimitrakopulos, P. Komninou, Phys. Status Solidi B 247, 1637–1640 (2010)

    Article  Google Scholar 

  8. D. Zhang, F.M. Liu, L.G. Cai, J. Mater. Sci.-Mater. Electron. 26, 1239–1245 (2015)

    Article  Google Scholar 

  9. Z.P. Wang, A. Morimoto, T. Kawae, H. Ito, K. Masugata, Phys. Lett. A 375, 3007–3011 (2011)

    Article  Google Scholar 

  10. T. Kumada, M. Ohtsuka, H. Fukuyama, AIP Adv. 5, 017136 (2015)

    Article  Google Scholar 

  11. A.V. Singh, S. Chandra, G. Bose, Thin Solid Films 519, 5846–5853 (2011)

    Article  Google Scholar 

  12. K. Tonisch, V. Cimalla, C. Foerster, H. Romanus, O. Ambacher, D. Dontsov, Sens. Actuators A Phys 132, 658–663 (2006)

    Article  Google Scholar 

  13. S. Shanmugan, D. Mutharasu, P. Anithambigai, N. Teeba, I.A. Razak, J. Ceram. Process. Res. 14, 385–390 (2013)

    Google Scholar 

  14. V. Dimitrova, D. Manova, E. Valcheva, Mater. Sci. Eng. B 68, 1–4 (1999)

    Article  Google Scholar 

  15. K. Kusaka, D. Taniguchi, T. Hanabusa, K. Tominaga, Vacuum 66, 441–446 (2002)

    Article  Google Scholar 

  16. F. Medjani, R. Sanjinés, G. Allidi, A. Karimi, Thin Solid Films 515, 260–265 (2006)

    Article  Google Scholar 

  17. A.L. Patterson, Phys. Rev. 56, 978–982 (1939)

    Article  Google Scholar 

  18. Y. Shi, S. Long, S. Yang, F. Pan, Vacuum 84, 962–968 (2010)

    Article  Google Scholar 

  19. H.C. Lee, J.Y. Lee, J. Mater. Sci.-Mater. Electron. 8, 385–390 (1997)

    Article  Google Scholar 

  20. Q.P. Wei, X.W. Zhang, D.Y. Liu, J. Li, K.C. Zhou, D. Zhang, Z.M. Yu, Trans. Nonferrous Met. Soc. China 24, 2845–2855 (2014)

    Article  Google Scholar 

  21. X.P. Kuang, H.Y. Zhang, G.G. Wang, L. Cui, C. Zhu, L. Jin, R. Sun, J.C. Han, Superlattices Microstruct. 52, 931–940 (2012)

    Article  Google Scholar 

  22. P. Limsuwan, N. Udomkan, S. Meejoo, P. Winotai, Int. J. Mod. Phys. B 19, 2073–2083 (2005)

    Article  Google Scholar 

  23. H. Zhong, Z.F. Xiao, Q.X. Jiao, J. Yang, H.L. Wang, R. Zhang, Y. Shi, J. Mater. Sci. Mater. Electron. 23, 2216–2220 (2012)

    Article  Google Scholar 

  24. M.A. Moreira, I. Doi, J.F. Souza, J.A. Diniz, Microelectron. Eng. 88, 802–806 (2011)

    Article  Google Scholar 

  25. X.D. Gao, E.Y. Jiang, H.H. Liu, G.K. Li, W.B. Mi, Z.Q. Li, P. Wu, H.L. Bai, Phys. Status Solidi A 204, 1130–1137 (2007)

    Article  Google Scholar 

  26. F. Aliaj, N. Syla, S. Avdiaj, T. Dilo, Bull. Mater. Sci. 36, 429–435 (2013)

    Article  Google Scholar 

  27. Y. Bian, M. Liu, G. Ke, Y. Chen, J. Dibattista, Surf. Coat. Technol. 267, 65–69 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the China Postdoctoral Science Foundation (Grant Nos. 2014M561623, 2014M551559), Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1401013B), the Fundamental Research Funds for Central Universities (Grant Nos. JUSRP51517, JUSRP11408, JUSRP51323B), Natural Science of Foundation of Jiangsu Province (Grant No. BK20150158), National Natural Science Foundation of Special Theoretical Physics (Grant No. 11547168), Undergraduate Training Programs for Innovation of Jiangnan University (Grant No. 2015309Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, Q., Yang, G.F. et al. Effect of substrate temperature and bias voltage on the properties in DC magnetron sputtered AlN films on glass substrates. J Mater Sci: Mater Electron 27, 3026–3032 (2016). https://doi.org/10.1007/s10854-015-4125-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4125-6

Keywords

Navigation