Skip to main content
Log in

Novel spectral properties for La0.7Ca0.3CrO3 ceramics by Mo6+ doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of Mo6+ doping on La0.7Ca0.3CrO3 oxide ceramics synthesized using a solid state reaction method were systematically investigated by thermogravimetric and differential thermal analysis, X-ray diffraction, 3D laser microscopy, UV–Vis spectrophotometry, and infrared diffused reflection measurement. Through these experiments, it was found that the structure, morphology, and spectral properties of the ceramic powders depend on the concentration of Mo6+ ions. Identification and quantification of crystalline phases using Rietveld refinement revealed the presence of Mo-doped calcium lanthanum chromites and calcium molybdate (CaMoO4) in doped oxides with ≤0.5 at% Mo, whereas LaCrO3, CaMoO4 and La2Mo2O9 were formed at higher concentrations. The mean surface roughness of all the samples was around 0.2 μm, and therefore had little influence on the solar absorptance and infrared emissivity. Calculated values obtained by integrating the spectra identified a low near infrared reflectivity (0.47) with 81 % solar absorptance, indicating the possibility of selectively controlling the spectral properties at a specific wavelength to create functional ceramics with variable near infrared reflectivity for use in solar applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Ogbonnaya, A. Gunasekaran, L. Weiss, Microsyst. Technol. 19, 995 (2013)

    Article  Google Scholar 

  2. S. Pal, D. Diso, S. Franza, A. Licciulli et al., J. Mater. Sci. 48, 8268 (2013)

    Article  Google Scholar 

  3. E. Sani, L. Mercatelli, P. Sansoni et al., J. Renew. Sustain. Ener. 4, 033104 (2012)

    Article  Google Scholar 

  4. B. Mahadik, S. Gujjar, G.M. Gouda et al., Appl. Surf. Sci. 299, 6 (2014)

    Article  Google Scholar 

  5. M.F. Modest, Radiative Heat Transfer (Academic Press, San Diego, 2003)

    Google Scholar 

  6. K. Sun, W. Zhou, X. Tang et al., Appl. Surf. Sci. 257, 9639 (2011)

    Article  Google Scholar 

  7. X. Liu, W. Su, Z. Lu, J. Phys. Chem. Solids 62, 1919 (2001)

    Article  Google Scholar 

  8. M.S.S. Khine, L. Chen, S. Zhang et al., Int. J. Hydrogen Energ. 38, 13300 (2013)

    Article  Google Scholar 

  9. H. Rashtchi, M.A.F. Sani, A.M. Dayaghi, Ceram. Int. 39, 8123 (2013)

    Article  Google Scholar 

  10. Z. Han, J. Liu, X.W. Li et al., J. Am. Ceram. Soc. 97, 2705 (2014)

    Article  Google Scholar 

  11. B.G. Tilset, H. Fjellvag, A. Kjekshus, J. Solid State Chem. 119, 271 (1995)

    Article  Google Scholar 

  12. Y.P. Fu, H.C. Wang, S.H. Hu, K.W. Tay, Ceram. Int. 37, 2127 (2011)

    Article  Google Scholar 

  13. P.A. Desai, P.N. Joshi, K.R. Patil, A.A. Athawale, Appl. Surf. Sci. 264, 574 (2013)

    Article  Google Scholar 

  14. L. Chen, C.H. Lu, Z.G. Fang et al., J. Phys. D. Appl. Phys. 46, 105302 (2013)

    Article  Google Scholar 

  15. S.P. Jiang, L. Liu, K.P. Ong et al., J. Power Sources 176, 82 (2008)

    Article  Google Scholar 

  16. S. Mukherjee, M.R. Gonal, M.K. Patel et al., J. Am. Ceram. Soc. 95, 290 (2012)

    Article  Google Scholar 

  17. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210 (2001)

    Article  Google Scholar 

  18. F. Yi, S. Xiaogang, F. Righini, Int. J. Thermophys. 24, 849 (2003)

    Article  Google Scholar 

  19. Y. Mastai, S. Polarz, M. Antonietti, Adv. Funct. Mater. 12, 197 (2002)

    Article  Google Scholar 

  20. X.D. Xiao, L. Miao, G. Xu et al., Appl. Surf. Sci. 257, 10729 (2011)

    Article  Google Scholar 

  21. D. Riya, K. Astha, K.S. Abhishek, Sens. Actuators B 210, 581 (2015)

    Article  Google Scholar 

  22. R.D. Shannon, Acta. Cryst. A32, 751 (1976)

    Article  Google Scholar 

  23. A.A. Athawale, P.A. Desai, Ceram. Int. 311, 3037 (2011)

    Article  Google Scholar 

  24. A. Akbari, M. Omidkhah, J.T. Darian, Ultrason. Sonochem. 23, 231 (2015)

    Article  Google Scholar 

  25. M.A. Sherief, J. Non-Cryst, Solids 358, 406 (2012)

    Google Scholar 

  26. B. Deb, A. Ghosh, J. Appl. Phys. 112, 024102 (2012)

    Article  Google Scholar 

  27. B. Deb, A. Ghosh, J. Alloys. Compd. 509, 8251 (2011)

    Article  Google Scholar 

  28. K. Sun, W.H. Lee, W.M. Risen, J. Non-Cryst, Solids 92, 145 (1987)

    Google Scholar 

  29. N. Pailhé, A. Wattiaux, M. Gaudon et al., J. Solid State Chem. 181, 1040 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the JiangSu collaborative innovation center for advanced inorganic function composites, the funding from the Priority Academic Program Development of the Jiangsu Higher Education Institutions (PAPD), the independent research topic of State Key Laboratory of Materials-Oriented Chemical Engineering (ZK201211), as well as the Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences (KLICM-2014-10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhua Lu or Zhongzi Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhang, R., Wei, L. et al. Novel spectral properties for La0.7Ca0.3CrO3 ceramics by Mo6+ doping. J Mater Sci: Mater Electron 27, 2412–2418 (2016). https://doi.org/10.1007/s10854-015-4039-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4039-3

Keywords

Navigation