Skip to main content
Log in

Improved thermal and mechanical properties of silicone resin composites by liquid crystal functionalized graphene nanoplatelets

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A liquid crystalline molecule, 4′-allyloxy-biphenyl-4-ol (AOBPO), was synthesized from 4,4′-dihydroxybiphenyl and allyl bromide as raw materials and then used to functionalize graphene nanoplatelets (GNS) via covalent bond and π–π interactions. The AOBPO functionalized graphene nanoplatelets (AOBPO–GNS) were characterized by fluorescence spectroscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction and Raman spectroscopy, and then mixed with silicone resin as fillers to fabricate silicon resin nanocomposites. The drastic quenching of the AOBPO fluorescence elucidated that the biphenyl anchoring unit of liquid crystalline AOBPO was strongly interacted with the surface of graphene sheets via π–π interactions. FTIR and Raman spectroscopy proved the existence of covalent interaction between the AOBPO and GNS. The thermal and mechanical properties testing indicated that the tensile strength of silicon resin nanocomposites increased by 463 % over that of neat silicon resin when the mass fraction of AOBPO–GNS was 1.0 %, and the elastic modulus of silicon resin nanocomposite increased by 1080 % over that of neat silicon resin if it came up to 2.0 %. The thermal conductivity of the resin filled with the AOBPO–GNS was improved to be 3.105 W/(m K) at the mass fraction of 15.0 %, which was enhanced more than 38 times over that of neat silicon resin. The resulted thermally conductive and mechanically applicable silicon resin nanocomposites could be significant in a wide variety of electronic packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Science 306, 2345 (2004)

    Article  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  3. R. Fryczkowski, M. Gorczowska, C. Ślusarczyk et al., Compos. Sci. Technol. 80, 87 (2013)

    Article  Google Scholar 

  4. H. Porwal, P. Tatarko, S. Grasso, J. Khaliq, I. Dlouhy, M. Reece, Carbon 64, 359 (2013)

    Article  Google Scholar 

  5. C.D. Scott, S. Arepalli, P. Nikolaev, R.E. Smalley, Appl. Phys. A 72, 573 (2001)

    Article  Google Scholar 

  6. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao et al., Nano Lett. 8, 902 (2008)

    Article  Google Scholar 

  7. C. Lee, X. Wei, W.J. Kysar, J. Hone, Science 321, 385 (2008)

    Article  Google Scholar 

  8. S. Chatterjee, J.W. Wang, W.S. Kuo, N.H. Tai, C. Salzmann, W.L. Li et al., Chem. Phys. Lett. 531, 6 (2012)

    Article  Google Scholar 

  9. Y. Pan, T. Wu, H. Bao, L. Li, Carbohydr. Polym. 83, 1908 (2011)

    Article  Google Scholar 

  10. H. Fan, L. Wang, K. Zhao, N. Li, Z. Shi, Z. Ge, Z. Jin, Biomacromolecules 11, 2345 (2010)

    Article  Google Scholar 

  11. C.P. Wong, Silicone Resin Electronic Device Encapsulant. USA, US5051275 A, 1991–09–24

  12. N. Gao, W. Liu, Z. Yan, Z. Wang, Opt. Mater. 35, 567 (2013)

    Article  Google Scholar 

  13. A.W. Norris, M. Bahadur, M. Yoshitake, Proc. SPIE 5941, 594115 (2005)

    Article  Google Scholar 

  14. Y. Liu, W. Chi, H. Duan, H. Zou, D. Yue, L. Zhang, J. Alloys Compd. (2015). doi:10.1016/j.jallcom.2015.10.129

    Google Scholar 

  15. D. Chen, F. Chen, X. Hu, H. Zhang, X. Yin, Y. Zhou, Compos. Sci. Technol. 117, 307 (2015)

    Article  Google Scholar 

  16. Y. Song, J. Yu, L. Yu, F.E. Alama, W. Dai, C. Li et al., Mater. Des. 88, 950 (2015)

    Google Scholar 

  17. B.M. Ahmadi, F. Taheri, J. Mater. Sci. 49, 6180 (2014)

    Article  Google Scholar 

  18. H. Suhermana, A.B. Sulong, J. Sahari, Ceram. Int. 39, 1277 (2013)

    Article  Google Scholar 

  19. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M.A. Herrera, R.D. Piner et al., Nat. Nanotechnol. 3, 327 (2008)

    Article  Google Scholar 

  20. L. Meng, C. Fu, Q. Lu, Prog. Nat. Sci. 19, 801 (2009)

    Article  Google Scholar 

  21. M. Słoma, M. Jakubowska, A. Kolek, K. Mleczkoet, P. Ptakal, A.W. Stadler et al., J. Mater. Sci. Mater. Electron. 22, 1321 (2011)

    Google Scholar 

  22. J. Chen, Q. Chen, Q. Ma, J. Colloid Interface Sci. 370, 32 (2012)

    Article  Google Scholar 

  23. L. Kumari, T. Zhang, G.H. Du, W.Z. Li, Q.W. Wang, A. Datye, K.H. Wu, Ceram. Int. 35, 1775 (2009)

    Article  Google Scholar 

  24. M. Deborah, A. Jawahar, T. Mathavan, M.K. Dhas, A.M. Benial, Spectrochim. Acta. A Mol. Biomol. Spectrosc. 139, 138 (2014)

    Article  Google Scholar 

  25. X. Shi, B. Jiang, J. Wang, Y. Yang, Carbon 50, 1005 (2012)

    Article  Google Scholar 

  26. C.W. Reed, Dielectric polymer nanocomposites, vol. 4 (Springer, New York, 2010), p. 95

    Book  Google Scholar 

  27. S.K. Yadav, S.S. Mahapatra, J.W. Cho, J.Y. Lee, J. Phys. Chem. C 114, 11395 (2010)

    Article  Google Scholar 

  28. Y. Kuang, B. Huang, Polymer 56, 563 (2015)

    Article  Google Scholar 

  29. M. Liu, Y. Duan, Y. Wang, Y. Zhao, Mater. Des. 53, 466 (2014)

    Article  Google Scholar 

  30. M. Ahmad, E. Ahmed, Z.L. Hong, W. Ahmed, A. Elhissi, N.R. Khalid, Ultrason. Sonochem. 21, 761 (2014)

    Article  Google Scholar 

  31. C. Li, G. Shi, J. Photochem. Photobiol. C Photochem. Rev. 19, 20 (2014)

    Article  Google Scholar 

  32. F.M. Winnik, Chem. Rev. 93, 587 (1993)

    Article  Google Scholar 

  33. J. Chen, H.Y. Liu, W.A. Weimer, M.D. Halls, D.H. Waldeck, G.C. Walker, J. Am. Chem. Soc. 124, 9034 (2002)

    Article  Google Scholar 

  34. W. Gao, L.B. Alemany, L.J. Ci, P.M. Ajayan, Nat. Chem. 1, 403 (2009)

    Article  Google Scholar 

  35. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Nano. Lett. 8, 36 (2008)

    Article  Google Scholar 

  36. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y.Y. Jia et al., Carbon 45, 1558 (2007)

    Article  Google Scholar 

  37. H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace, D. Li, Adv. Mater. 20, 3557 (2008)

    Article  Google Scholar 

  38. L.J. Ma, X.M. Yang, C.X. Guo, Y.W. Li, Y.F. Tu, X.L. Zhu et al., Carbon 53, 269 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Support from the National Basic Research Program of China (Program 973) (No. 2011CB605603), the Basic Research Project of Shenzhen (No. JCYJ20140418091413509) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijian Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, D., Xiong, W., Tan, G. et al. Improved thermal and mechanical properties of silicone resin composites by liquid crystal functionalized graphene nanoplatelets. J Mater Sci: Mater Electron 27, 2120–2127 (2016). https://doi.org/10.1007/s10854-015-4000-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4000-5

Keywords

Navigation