Skip to main content
Log in

Stress evolution in AlN and GaN grown on Si(111): experiments and theoretical modeling

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We introduce a temperature dependent anisotropic model for the stresses in gallium nitride (GaN) and aluminum nitride (AlN) films grown on Si(111) substrates and their epiwafer bow effects caused by thermal mismatch between the film and substrate. The model is verified by Raman scattering experiments with carefully prepared samples. The stresses analyzed from Raman frequency shifts in experiments show excellent agreement with the stresses from finite element modeling simulations. The interaction force mechanisms and the impact factors are compared. The analysis provides an insight in understanding the defect behaviors in film growth. Our model could be useful in the evaluation of the residual stresses and deformations in film growth control, post thermal process in device manufacture, packaging, and reliability estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.A. Hadi, M.S. Shur, S.K. O’Leary, Steady-state and transient electron transport within the wide energy gap compound semiconductors gallium nitride and zinc oxide: an updated and critical review. J. Mater. Sci. Mater. Electron. 25(11), 4675–4713 (2014)

    Article  Google Scholar 

  2. J.A. del Alamo, J. Joh, GaN HEMT reliability. Microelectron. Reliab. 49(9), 1200–1206 (2009)

    Article  Google Scholar 

  3. C.V. Falub, H. von Känel, F. Isa et al., Scaling hetero-epitaxy from layers to three-dimensional crystals. Science 335(6074), 1330–1334 (2012)

    Article  Google Scholar 

  4. F. Scholz, Semipolar GaN grown on foreign substrates: a review. Semicond. Sci. Technol. 27(2), 024002 (2012)

    Article  Google Scholar 

  5. M. Wei, X. Wang, X. Pan et al., Effect of high temperature AlGaN buffer thickness on GaN Epilayer grown on Si(111) substrates. J. Mater. Sci. Mater. Electron. 22(8), 1028–1032 (2011)

    Article  Google Scholar 

  6. G. Meneghesso, G. Verzellesi, F. Danesin et al., Reliability of GaN high-electron-mobility transistors: state of the art and perspectives. IEEE Trans. Device Mater. Reliab. 8(2), 332–343 (2008)

    Article  Google Scholar 

  7. J.H. Leach, Y. Shishkin, K. Udwary et al., Large-area Bow-free n+ GaN Templates by HVPE for LEDs SPIE OPTO (International Society for Optics and Photonics, 2014), pp. 898602-1–898602-13

  8. B. Zhang, Y. Liu, A review of GaN-based optoelectronic devices on silicon substrate. Chin. Sci. Bull. 59(12), 1251–1275 (2014)

    Article  Google Scholar 

  9. H. Hirayama, S. Fujikawa, N. Kamata, Recent progress in AlGaN-Based deep-UV LEDs. Electr. Commun. Jpn. 98(5), 1–8 (2015)

    Article  Google Scholar 

  10. B. Leung, J. Han, Q. Sun, Strain relaxation and dislocation reduction in AlGaN step-graded buffer for crack-free GaN on Si(111). Phys. Status Solidi 11(3–4), 437–441 (2014)

    Article  Google Scholar 

  11. S.A. Campbell, The Science and Engineering of Microelectronic Fabrication, 2nd edn. (Oxford University Press, New York, 1996)

    Google Scholar 

  12. L. Wang, C. Xu, W. Zhang et al., Investigation of thermal-mechanical stress and chip-packaging-interaction issues in low-k chips. in 16th International Conference on Electronic Packaging Technology (ICEPT) (2015), IEEE, pp. 627–630

  13. W.D. Van Driel, C.A. Yuan, S. Koh et al., LED system reliability. in 12th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), (2011), IEEE, pp. 1–5

  14. R.R. Reeber, K. Wang, Thermal expansion and lattice parameters of group IV semiconductors. Mater. Chem. Phys. 46(2), 259–264 (1996)

    Article  Google Scholar 

  15. R.R. Reeber, K. Wang, Lattice parameters and thermal expansion of GaN. J. Mater. Res. 15(01), 40–44 (2000)

    Article  Google Scholar 

  16. G.A. Slack, S.F. Bartram, Thermal expansion of some diamondlike crystals. J. Appl. Phys. 46(1), 89–98 (1975)

    Article  Google Scholar 

  17. R.R. Reeber, K. Wang, High Temperature Elastic Constant Prediction of Some Group III-Nitrides. MRS Internet J. Nitride Semicond. Res. 6, 3 (2001)

    Google Scholar 

  18. H. Landolt-Bornstein, in Crystal and Solid State Physics, ed. by K.-H. Hellwege (Springer, Berlin, 1979), p. 116

    Google Scholar 

  19. M.D. Kluge, J.R. Ray, A. Rahman, Molecular dynamic calculation of elastic constants of silicon. J. Chem. Phys. 85(7), 4028–4031 (1986)

    Article  Google Scholar 

  20. W.A. Brantley, Calculated elastic constants for stress problems associated with semiconductor devices. J. Appl. Phys. 44(1), 534–535 (1973)

    Article  Google Scholar 

  21. R.J. Bruls, H.T. Hintzen, G. De With et al., The temperature dependence of the Young’s modulus of MgSiN2, AlN and Si3N4. J. Eur. Ceram. Soc. 21(3), 263–268 (2001)

    Article  Google Scholar 

  22. M. Hopcroft, W.D. Nix, T.W. Kenny, What is the Young’s Modulus of Silicon? J. Microelectromech. Syst. 19(2), 229–238 (2010)

    Article  Google Scholar 

  23. M.A. Moram, M.E. Vickers, X-ray diffraction of III-nitrides. Rep. Prog. Phys. 72(3), 036502 (2009)

    Article  Google Scholar 

  24. M. Kuball, Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control. Surf. Interface Anal. 31(10), 987–999 (2001)

    Article  Google Scholar 

  25. G. Callsen, M.R. Wagner, J.S. Reparaz et al., Phonon pressure coefficients and deformation potentials of wurtzite AlN determined by uniaxial pressure-dependent Raman measurements. Phys. Rev. B 90(20), 205206 (2014)

    Article  Google Scholar 

  26. C.A. Arguello, D.L. Rousseau, S.P.S. Porto, First-order Raman effect in wurtzite-type crystals. Phys. Rev. 181(3), 1351 (1969)

    Article  Google Scholar 

  27. W. Zheng, R. Zheng, F. Huang et al., Raman tensor of AlN bulk single crystal. Photon. Res. 3(2), 38–43 (2015)

    Article  Google Scholar 

  28. D. Zhuang, J.H. Edgar, B. Liu et al., Bulk AlN crystal growth by direct heating of the source using microwaves. J. Cryst. Growth 262(1), 168–174 (2004)

    Article  Google Scholar 

  29. J. Gleize, M.A. Renucci, J. Frandon et al., Phonon deformation potentials of wurtzite AlN. J. Appl. Phys. 93(4), 2065–2068 (2003)

    Article  Google Scholar 

  30. C. Kisielowski, J. Krüger, S. Ruvimov et al., Strain-related phenomena in GaN thin films. Phys. Rev. B 54(24), 17745 (1996)

    Article  Google Scholar 

  31. X.H. Zhang, C.L. Zhao, J.C. Han et al., Observation of symmetrically decay of A1 (longitudinal optical) mode in free-standing GaN bulk single crystal from Li3 N flux method. Appl. Phys. Lett. 102(1), 011916 (2013)

    Article  Google Scholar 

  32. G. Callsen, J.S. Reparaz, M.R. Wagner et al., Phonon deformation potentials in wurtzite GaN and ZnO determined by uniaxial pressure dependent Raman measurements. Appl. Phys. Lett. 98(6), 061906 (2011)

    Article  Google Scholar 

  33. J.Y. Lu, Z.J. Wang, D.M. Deng et al., Determining phonon deformation potentials of hexagonal GaN with stress modulation. J. Appl. Phys. 108(12), 123520 (2010)

    Article  Google Scholar 

  34. W.D. Nix, Mechanical properties of thin films. Metall. Trans. A 20(11), 2217–2245 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Hightech Program (863) with contract number of SS2015AA041802. Prof. Qian Sun is also grateful to the financial support from the National Natural Science Foundation of China (Grant Nos. 61534007, 61404156, and 61522407), the National High Technology Research and Development Program of China (863 Program) (Grant No. 2013AA031901), Suzhou Science and Technology Program (Grant No. ZXG2013042), and the Recruitment Program of Global Experts (1000 Youth Talents Plan). Authors are also grateful to the Analytical and Testing Center, Huazhong University of Science and Technology for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiquan Dai or Sheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Li, S., Gao, H. et al. Stress evolution in AlN and GaN grown on Si(111): experiments and theoretical modeling. J Mater Sci: Mater Electron 27, 2004–2013 (2016). https://doi.org/10.1007/s10854-015-3984-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3984-1

Keywords

Navigation