Skip to main content

Advertisement

Log in

Thermostable Ag die-attach structure for high-temperature power devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper explores the possibility of using Ag paste containing silicon carbide particles (SiC-p) as a novel high-temperature die-attachment solution for the design of power devices. The bonding structure used in this research was composed of silicon dies and a direct bonded copper (DBC) substrate. A SiC-p/microporous Ag composite structure was prepared by sintering a Ag microflake paste containing 2 wt% sub-micron SiC-p under mild conditions (250 °C and 0.4 MPa for 30 min). In addition to the Ag paste, the surface metallization of the DBC substrate was also evaluated in this research. Ag metallization layers deposited by electroplating and sputtering were compared, along with samples also containing a titanium (Ti) diffusion barrier layer between Cu and Ag. The results indicated that the SiC-p-containing Ag sinter paste showed better stability in storage tests than the paste without SiC-p at the temperatures such as 150, 250 and 350 °C. Additionally, the Ti diffusion barrier layer played an active role in preventing the oxidation of Cu and inter-diffusion between Cu and Ag during use at high temperatures exceeding 250 °C. The joint bonded by SiC-p-containing Ag paste on DBC substrate with Ti barrier layer exhibited excellent stability up to 1000 h at 150 and 250 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Benda, J. Gowar, D.A. Grant, Discrete and Integrated Power Semiconductor Devices (Wiley, New York, 1999), pp. 397–401

    Google Scholar 

  2. Y.S. Park, SiC Materials and Devices (Academic Press, San Diego, 1998), pp. 13–16

    Google Scholar 

  3. V.R. Manikam, K.Y. Cheong, IEEE Trans. Compon. Packag. Manuf. 1, 457 (2011)

    Article  Google Scholar 

  4. R. Kisiel, Z. Szczepański, Microelectron. Reliab. 49, 627 (2009)

    Article  Google Scholar 

  5. S. Sakamoto, T. Sugahara, K. Suganuma, J. Mater. Sci.: Mater. Electron. 24, 1332 (2012)

    Google Scholar 

  6. J. Li, C.M. Johnson, C. Buttay, W. Sabbah, S. Azzopardi, J. Mater. Process. Technol. 215, 299 (2015)

    Article  Google Scholar 

  7. K. Xiao, J.N. Calata, H. Zheng, K.D.T. Ngo, G.Q. Lu, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 1271 (2013)

    Article  Google Scholar 

  8. G. Chen, Y. Cao, Y. Mei, D. Han, G.Q. Lu, X. Chen, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 1759 (2012)

    Article  Google Scholar 

  9. Y.-H. Mei, J.-Y. Lian, X. Chen, G. Chen, X. Li, G.-Q. Lu, IEEE Trans. Dev. Mater. Reliab. 14, 194 (2014)

    Article  Google Scholar 

  10. J. McCoppin, T.L. Reitz, R. Miller, H. Vijwani, S. Mukhopadhyay, D. Young, J. Electron. Mater. 43, 3379 (2014)

    Article  Google Scholar 

  11. A. Hutzler, A. Tokarski, A. Schletz, Microelectron. Reliab. 53, 1774 (2013)

    Article  Google Scholar 

  12. R. Khazaka, L. Mendizabal, D. Henry, J. Electron. Mater. 43, 2459 (2014)

    Article  Google Scholar 

  13. S. Sakamoto, S. Nagao, K. Suganuma, J. Mater. Sci.: Mater. Electron. 24, 2593 (2013)

    Google Scholar 

  14. H. Zhang, S. Nagao, K. Suganuma, J. Electron. Mater. 44, 3896 (2015)

    Article  Google Scholar 

  15. F. Dugal, M. Ciappa, Microelectron. Reliab. 54, 1856 (2014)

    Article  Google Scholar 

  16. X. Cao, T. Wang, K.D.T. Ngo, G.Q. Lu, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 495 (2011)

    Article  Google Scholar 

  17. L. Jiang, T.G. Lei, K.D.T. Ngo, G.-Q. Lu, S. Luo, IEEE Trans. Compon. Packag. Manuf. Technol. 4, 751 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-Aid for Scientific Research (S) (Grant No. 24226017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijo Nagao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Nagao, S., Suganuma, K. et al. Thermostable Ag die-attach structure for high-temperature power devices. J Mater Sci: Mater Electron 27, 1337–1344 (2016). https://doi.org/10.1007/s10854-015-3894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3894-2

Keywords

Navigation