Skip to main content
Log in

Effect of MnO2 on structural and electrical characteristics of Ba0.5Sr0.5TiO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As the variable dielectric constant, loss and some electric characteristics over the frequency and temperature band of operation make a material unsuitable for some devices, an attempt has been made through this work to obtain frequency–temperature independence of said parameters by suitable addition of metal oxide (MnO2) in lead-free ferroelectric (BaSr) TiO3 in the band of interest. The doping concentration of the oxide in Ba0.5Sr0.5TiO3 has been optimized for the purpose. The doping of manganese oxide reduces the loss by compensating the oxygen vacancies and the structural defects. With variable doping concentration of MnO2 dielectric loss is brought down to an acceptable limit (<10−3). Impedance and modulus spectroscopy of the prepared materials provide an insight into the electrical processes involved in it. The AC/DC conductivity analysis provides loss-conductivity spectrum for device utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Affordable Phase Shifter (Agile Materials and Technologies, Inc., 2003). www.agilematerials.com

  2. A.K. Tagantsev, V.O. Sherman, K.F. Astafiev, J. Venkatesh, N. Setter, J. Electroceram. 11, 5–66 (2003)

    Article  Google Scholar 

  3. A. Khalfallaoui, G. Velu, L. Burgnies, J.C. Carru, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1029–1033 (2010)

    Article  Google Scholar 

  4. M. Banerjee, S. Mukherjee, S. Maitra, Ceramica 58, 99–104 (2012)

    Google Scholar 

  5. V. Laur, R. Costes, F. Houndonougbo, V. Madrangeas, D. Cros, M. Pate, J.P. Ganne, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 2363–2369 (2009)

    Article  Google Scholar 

  6. Z.W. Jie, D.J. Ming, Z.X. Bin, C. Qing, L.Q. Chun, S.Y. Ping, Chin. Phys. B 21, 1-5 (2012)

    Google Scholar 

  7. M.W. Cole, P.C. Joshi, M.H. Ervin, J. Appl. Phys. 89, 6336–6340 (2001)

    Article  Google Scholar 

  8. J. Xu, H.X. Liu, B. He, H. Hao, Y. Li, M. Cao, Z.Y. Yu, Opt. Appl. XL, 255–264 (2010)

    Google Scholar 

  9. A. Ioachim, M.I. Toacsan, L. Nedelcu, M.G. Banciu, C.A. Dutu, M. Buda, M. Sava, M. Popescu, N. Scarisoreanu, M. Dinescu, Rom. J. Inf. Sci. Technol. 10, 347–35499 (2007)

    Google Scholar 

  10. J. Gong, J. Cheng, W. Zhu, S. Yu, W. Wu, Z. Meng, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2579–2582 (2007)

    Article  Google Scholar 

  11. J.N. Lin, T.B. Wu, J. Appl. Phys. 68, 985 (1990)

    Article  Google Scholar 

  12. A. Kajdos, MATRL 286G (2014)

  13. A.M. Azad, S. Subramaniam, Mater. Res. Bull. 37, 11–21 (2002)

    Article  Google Scholar 

  14. E. Wu, POWD, An Interactive Powder Diffraction Data Interpretation and Indexing Program, Version 2.1. School of Physical Science Flinders University of South Australia, Bedford Park, SA, 5042, Australia

  15. M.Y. Fan, S.L. Jiang, J. Electron. Sci. Technol. China 7, 281–285 (2009)

    Google Scholar 

  16. I. Norezan, A.K. Yahya, M.K. Talari, J. Mater. Sci. Technol. 28, 1137–1144 (2012)

    Article  Google Scholar 

  17. K.H. Cho, C.Y. Kang, S.J. Yoon, J. Korean Phys. Soc. 53, 2378–2381 (2008)

    Article  Google Scholar 

  18. A.K. Roy, K. Prasad, A. Prasad, Proc. Appl. Ceram. 7(2), 81–91 (2013)

    Article  Google Scholar 

  19. R. Ranjan, R. Kumar, B. Behera, R.N.P. Choudhury, Phys. B, (2009). doi:10.1016/j.physb.2009.06.113

  20. C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci. Mater. Electron. 26, 2343–2356 (2015)

    Article  Google Scholar 

  21. J.R. Macdonald, Ann. Biomed. Eng. 20, 289–305 (1992)

    Article  Google Scholar 

  22. A. Sukla, R.N.P. Choudhury, A.K. Thakur, J. Phys. Chem. Solids 70, 1401–1407 (2009)

    Article  Google Scholar 

  23. C. Behera, R.N.P. Choudhary, P.R. Das, Ceram. Int. 41, 13042–13054 (2015)

    Article  Google Scholar 

  24. P.R. Das, B.N. Parida, R. Padhee, R.N.P. Choudhury, J. Adv. Ceram. 2, 112–118 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Authors thankfully acknowledge the help provided by Prof. K. L. Yadav of IIT Roorkee for the XRD measurement and IIT Kharagpur for SEM facility. Authors are extremely thankful to Sri Chakradhar Behera (SRF) for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niladri Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, N., Choudhury, R.N.P. Effect of MnO2 on structural and electrical characteristics of Ba0.5Sr0.5TiO3 . J Mater Sci: Mater Electron 27, 947–955 (2016). https://doi.org/10.1007/s10854-015-3838-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3838-x

Keywords

Navigation