Skip to main content
Log in

Effect of grain size and strain on the bandgap of glancing angle deposited AZO nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Vertical and tilted nanorod arrays of Al-doped ZnO were deposited by glancing angle deposition method at room temperature. The morphologies of the samples were varied by adjusting the rotation speed of the substrate. The applicability of various analytical methods was considered in order to understand the structural results. Analysis of X-ray diffraction data showed that the most suitable evaluation of some structural parameters was performed with a ‘strain profile’ model. The values of the grain size and strain obtained from the best fits of this model to the experimental data were reasonable. The bandgap increased with decreasing grain size and increasing strain for the samples. The change in bandgap of the samples was explained by our detailed structural analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Xu, Z. Liang, H. Shen, Mater. Lett. 137, 428 (2014)

    Article  Google Scholar 

  2. M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Sens. Actuators B 196, 413 (2014)

    Article  Google Scholar 

  3. P.-H. Lei, C.-M. Hsu, Y.-S. Fan, S.-J. Ye, Int. J. Nanotechnol. 11, 359 (2014)

    Article  Google Scholar 

  4. D.K. Takci, E.S. Tuzemen, K. Kara, S. Yilmaz, R. Esen, O. Baglayan, J. Mater. Sci. Mater. Electron. 25, 2078 (2014)

    Article  Google Scholar 

  5. X. Wang, X. Zeng, D. Huang, X. Zhang, Q. Li, J. Mater. Sci. Mater. Electron. 23, 1580 (2012)

    Article  Google Scholar 

  6. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Reading, MA, 1978)

    Google Scholar 

  7. M.A. Tagliente, M. Massaro, G. Mattei, P. Mazzoldi, V. Bello, G. Pellegrini, J. Appl. Phys. 104, 093505 (2008)

    Article  Google Scholar 

  8. A. Sales Amalraj, A.P. Dharani, J. Joseph Prince, V. Sivakumar, G. Senguttuvan, J. Mater. Sci.: Mater. Electron. 26, 4257 (2015)

  9. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  10. Y. Rosenberg, V.S. Machavariani, V. Voronel, S. Garber, A. Rubshtein, A.I. Frenkel, E.A. Stern, J. Phys. Condens. Matter 12, 8081 (2000)

    Article  Google Scholar 

  11. T. Pandiyarajan, B. Karthikeyan, J. Nanoparticle Res. 14, 647 (2012)

    Article  Google Scholar 

  12. M.A. Tagliente, M. Massaro, Nucl. Instrum. Methods Phys. Res. B 266, 1055 (2008)

    Article  Google Scholar 

  13. L. Li, L. Fang, X.M. Chen, J. Liu, F.F. Yang, Q.J. Li, G.B. Liu, S.J. Feng, Phys. E 41, 169 (2008)

    Article  Google Scholar 

  14. R. Wen, L. Wang, X. Wang, G.-H. Yue, Y. Chen, D.-L. Peng, J. Alloys Compd. 508, 370 (2010)

    Article  Google Scholar 

  15. M. Gao, X. Wu, J. Liu, W. Liu, Appl. Surf. Sci. 257, 6919 (2011)

    Article  Google Scholar 

  16. F.-H. Wang, H.-P. Chang, C.-C. Tseng, C.-C. Huang, Surf. Coat. Technol. 205, 5269 (2011)

    Article  Google Scholar 

  17. J. Chu, X. Peng, M. Sajjad, B. Yang, P.X. Feng, Thin Solid Films 520, 3493 (2012)

    Article  Google Scholar 

  18. J.M. LaForge, M.T. Taschuk, M.J. Brett, Thin Solid Films 519, 3530 (2011)

    Article  Google Scholar 

  19. T. Karabacak, T.-M. Lu, Shadowing growth and physical self-assembly of 3D columnar structures, in Handbook of Theoretical and Computational Nanotechnology, Chapter 69, ed. by M. Rieth, W. Schommers (American Scientific Publishers, Stevenson Ranch, CA, 2005), p. 729

    Google Scholar 

  20. K. Robbie, M.J. Brett, J. Vac. Sci. Technol. A Vac. Surf. Films 15, 1460 (1997)

    Article  Google Scholar 

  21. K. Robbie, M.J. Brett, A. Lakhtakia, Nature 384, 616 (1996)

    Article  Google Scholar 

  22. Y.P. Zhao, S.B. Chaney, Z.Y. Zhang, J. Appl. Phys. 100, 063527 (2006)

    Article  Google Scholar 

  23. Y.J. Liu, H.Y. Chu, Y.P. Zhao, J. Phys. Chem. C 114, 8176 (2010)

    Article  Google Scholar 

  24. T. Pradeep, A Textbook of Nanoscience and Nanotechnology (Tata McGraw-Hill, New Delhi, 2012), p. 127

    Google Scholar 

  25. J. Zhang, Y. Zhang, K.W. Xu, V. Ji, Solid State Commun. 139, 87 (2006)

    Article  Google Scholar 

  26. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford, New York, 1985)

    Google Scholar 

  27. S.P. Cao, F. Ye, B. Houa, A.Y. Xua, Thin Solid Films 545, 205 (2013)

    Article  Google Scholar 

  28. T. Karabacak, J.J. Senkevich, G.-C. Wang, T.-M. Lu, J. Vac. Sci. Technol. A 23, 986 (2005)

    Article  Google Scholar 

  29. T. Karabacak, C.R. Picu, J.J. Senkevich, G.-C. Wang, T.-M. Lu, J. Appl. Phys. 96, 5740 (2004)

    Article  Google Scholar 

  30. Z. Pan, X. Tian, S. Wu, X. Yu, Z. Li, J. Deng, C. Xiao, G. Hu, Z. Wei, Appl. Surf. Sci. 265, 870 (2013)

    Article  Google Scholar 

  31. T. Ganesh, S. Rajesh, F.P. Xavier, Mater. Sci. Semicond. Process. 16, 295 (2013)

    Article  Google Scholar 

  32. V. Biju, N. Sugathan, V. Vrinda, S.L. Salini, J. Mater. Sci. 43, 1175 (2008)

    Article  Google Scholar 

  33. S. Patil, M. Chougule, S. Pawar, B. Raut, S. Sen, V. Patil, J. Alloys Compd. 509, 10055 (2011)

    Article  Google Scholar 

  34. M. Ohtsu, Nanophotonics and Nanofabrication, vol. 3 (Wiley-VCH, New York, 2015), p. 111

    Google Scholar 

  35. S.K. Sampath, J.F. Cordaro, J. Am. Ceram. Soc. 81, 649 (1998)

    Article  Google Scholar 

  36. G.A. Siegel, R.A. Bartlet, D. Decker, M.M. Olmstead, P.P. Power, Inorg. Chem. 26, 1769 (1987)

    Article  Google Scholar 

  37. R. Vinodkumar, I. Navas, S.R. Chalana, K.G. Gopchandran, V. Ganesan, V. Ganesan, R. Philip, S.K. Sudheer, V.P. Mahadevan Pillai, Appl. Surf. Sci. 257, 708 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (A. Y.) acknowledges support from the Turkish Academy of Sciences (2219). Abdulrahman has been supported by an Iraqi Government scholarship. This work was supported by NASA (Grant No. NNX09AW22A) and NSF (Grant Nos. EPS-1003970 and 1159830). The authors thank UALR Center for Integrative Nanotechnology Sciences for helping with SEM images and UV–Vis–NIR measurements.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yildiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, A., Cansizoglu, H., Abdulrahman, R. et al. Effect of grain size and strain on the bandgap of glancing angle deposited AZO nanostructures. J Mater Sci: Mater Electron 26, 5952–5957 (2015). https://doi.org/10.1007/s10854-015-3167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3167-0

Keywords

Navigation