Skip to main content
Log in

Synthesis of ZnSnO3 nanocubes and thin film fabrication of (ZnSnO3/PMMA) composite through electrospray deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A composite of zinc stannate (ZnSnO3) nanocubes and poly(methyl methacrylate) (PMMA) has been prepared and deposited on a flexible substrate polyethylene terephthalate (PET) through electrospray deposition (ESD). This fabrication technique has been found very effective for deposition of this composite as thin film. ZnSnO3 is an inorganic biocompatible and piezoelectric material while PMMA is a transparent and durable organic polymer material. ZnSnO3 naocubes have been synthesized via an aqueous solution method and ZnSnO3/PMMA composite has been deposited as thin film on PET through ESD. The average layer thickness of the as deposited ZnSnO3/PMMA composite film on PET was found to be 149 nm. Morphological and structural characterization of ZnSnO3 nanocubes through FESEM and XRD showed its size uniformity and crystalline nature. The size of the ZnSnO3 nanocubes was estimated by FESEM analysis which was around 50–70 nm. The chemical composition has been investigated with the help of FTIR and Raman spectroscopy. The optical characterization of as deposited ZnSnO3/PMMA composite film through UV/Vis spectroscopy showed an average transmittance of around 92 % and electrical characterization exhibited resistivity of approximately 50 × 105 Ω cm. This dielectric nature of ZnSnO3/PMMA composite film indicates that this composite material can be employed as dielectric layer in printed electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.Y. Lee, D. Kim, J.-H. Lee, T.Y. Kim, M.K. Gupta, S.-W. Kim, Adv. Funct. Mater. 24, 37 (2014)

    Article  Google Scholar 

  2. J.M. Wu, C. Xu, Y. Zhang, Z.L. Wang, ACS Nano 6, 4335 (2012)

    Article  Google Scholar 

  3. J.M. Wu, C. Xu, Y. Zhang, Y. Yang, Y. Zhou, Z.L. Wang, Adv. Mater. 24, 6094 (2012)

    Article  Google Scholar 

  4. H. Fan, Y. Zeng, X. Xu, N. Lv, T. Zhang, Sens. Actuators B Chem. 153, 170 (2011)

    Article  Google Scholar 

  5. Y. Chen, L. Yu, Q. Li, Y. Wu, Q. Li, T. Wang, Nanotechnology 23, 415501 (2012)

    Article  Google Scholar 

  6. P. Song, Q. Wang, Z. Yang, Sens. Actuators B Chem. 156, 983 (2011)

    Article  Google Scholar 

  7. J.M. Wu, C.-Y. Chen, Y. Zhang, K.-H. Chen, Y. Yang, Y. Hu, J.-H. He, Z.L. Wang, ACS Nano 6, 4369 (2012)

    Article  Google Scholar 

  8. S.-J. Seo, C.G. Choi, Y.H. Hwang, B.-S. Bae, J. Phys. D Appl. Phys. 42, 035106 (2009)

    Article  Google Scholar 

  9. H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, D.A. Keszler, Appl. Phys. Lett. 86, 013503 (2005)

    Article  Google Scholar 

  10. B. Tan, E. Toman, Y. Li, Y. Wu, J. Am. Chem. Soc. 129, 4162 (2007)

    Article  Google Scholar 

  11. Y.-Y. Choi, K.-H. Choi, H. Lee, H. Lee, J.-W. Kang, H.-K. Kim, Sol. Energy Mater. Sol. Cells 95, 1615 (2011)

    Article  Google Scholar 

  12. D. Kovacheva, K. Petrov, Solid State Ionics 109, 327 (1998)

    Article  Google Scholar 

  13. D.L. Young, H. Moutinho, Y. Yan, T.J. Coutts, J. Appl. Phys. 92, 310 (2002)

    Article  Google Scholar 

  14. S. Yu-sheng, Z. Tian-shu, Sens. Actuators B 12, 5 (1993)

    Article  Google Scholar 

  15. X.Y. Xue, Y.J. Chen, Q.H. Li, C. Wang, Y.G. Wang, T.H. Wang, Appl. Phys. Lett. 88, 182102 (2006)

    Article  Google Scholar 

  16. B. Liu, H.C. Zeng, Langmuir 20, 4196 (2004)

    Article  Google Scholar 

  17. B. Chandar Shekar, S. Sathish, B.T. Bhavyasree, B. Ranjith Kumar, Adv. Mater. Res. 678, 309 (2013)

    Article  Google Scholar 

  18. S. Uemura, M. Yoshida, S. Hoshino, T. Kodzasa, T. Kamata, Thin Solid Films 438–439, 378–381 (2003)

    Article  Google Scholar 

  19. D. Alobaidani, D. Furniss, M.S. Johnson, A. Endruweit, A.B. Seddon, Opt. Lasers Eng. 48, 575 (2010)

    Article  Google Scholar 

  20. A. Okada, A. Usuki, Mater. Sci. Eng. C 3, 109 (1995)

    Article  Google Scholar 

  21. J.W. Gilman, Appl. Clay Sci. 15, 31 (1999)

    Article  Google Scholar 

  22. S. Kim, J. Ok, M. Ahn, D. Park, G. Lee, Trans. Electr. Electron. Mater. 3, 9 (2002)

    Article  Google Scholar 

  23. A.A. Novakova, V.Y. Lanchinskaya, A.V. Volkov, T.S. Gendler, T.Y. Kiseleva, M.A. Moskvina, S.B. Zezin, J. Magn. Magn. Mater. 258–259, 354–357 (2003)

    Article  Google Scholar 

  24. M. Mustafa, H.C. Kim, H.D. Yang, K.H. Choi, J. Mater. Sci. Mater. Electron. 24, 4321 (2013)

    Article  Google Scholar 

  25. N.M. Muhammad, S. Sundharam, H.-W. Dang, A. Lee, B.-H. Ryu, K.-H. Choi, Curr. Appl. Phys. 11, S68 (2011)

    Article  Google Scholar 

  26. M. Mustafa, M.N. Awais, G. Pooniah, K.H. Choi, J. Ko, Y.H. Doh, J. Korean Phys. Soc. 61, 470 (2012)

    Article  Google Scholar 

  27. N.M. Muhammad, A.M. Naeem, N. Duraisamy, D.-S. Kim, K.-H. Choi, Thin Solid Films 520, 1751 (2012)

    Article  Google Scholar 

  28. K.-H. Choi, M. Mustafa, J.-B. Ko, Y.-H. Doh, Thin Solid Films 525, 40 (2012)

    Article  Google Scholar 

  29. K.H. Choi, N.M. Muhammad, H.W. Dang, A. Lee, J.S. Hwang, J.W. Nam, B.H. Ryu, Int. J. Mater. Res. 102, 1252 (2011)

    Article  Google Scholar 

  30. S. Khan, Y.H. Doh, A. Khan, A. Rahman, K.H. Choi, D.S. Kim, Curr. Appl. Phys. 11, S271 (2011)

    Article  Google Scholar 

  31. M. Maria, D. Navaneethan, K.H. Chan, H.M. Taek, C.K. Hyun, Appl. Phys. A 109, 515 (2012)

    Article  Google Scholar 

  32. A. Ali, K. Ali, K.-R. Kwon, M.T. Hyun, K.H. Choi, J. Mater. Sci. Mater. Electron. 25, 1097 (2013)

    Article  Google Scholar 

  33. M. Mustafa, H.C. Kim, Y.H. Doh, K.H. Choi, Polym. Eng. Sci. 54, 675–681 (2014)

    Article  Google Scholar 

  34. K.-H. Choi, K. Rahman, N.M. Muhammad, A. Khan, K.-R. Kwon, Y.-H. Doh, H.-C. Kim, in Recent Advances in Nanofabrication Techniques and Applications, ed. by B. Cui (2011). doi:10.5772/24672

  35. H. Fan, S. Ai, P. Ju, Cryst. Eng. Comm. 13, 113 (2011)

    Article  Google Scholar 

  36. J. Zeng, M. Xin, H. Wang, H. Yan, W. Zhang, J. Phys. Chem. C 112, 4159 (2008)

    Article  Google Scholar 

  37. K.J. Thomas, M. Sheeba, V.P.N. Nampoori, C.P.G. Vallabhan, P. Radhakrishnan, J. Opt. A Pure Appl. Opt. 10, 055303 (2008)

    Article  Google Scholar 

  38. C. Hu, S. Chen, W. Zhang, F. Xie, J. Chen, X. Chen, J. Raman Spectrosc. 44, 1136 (2013)

    Article  Google Scholar 

  39. S. Sathish, B. Shekar, Indian J. Pure Appl. Phys. 52, 64 (2014)

    Google Scholar 

  40. G. Duan, C. Zhang, A. Li, X. Yang, L. Lu, X. Wang, Nanoscale Res. Lett. 3, 118 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nano-Convergence Foundation (commercialization of the hard coating/index matching film for touch panel ITO film) funded by the Ministry of Science, ICT and Future Planning (MSIP, Korea) and the Ministry of Trade, Industry and Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Hyun Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, K.H., Siddiqui, G.U., Yang, Bs. et al. Synthesis of ZnSnO3 nanocubes and thin film fabrication of (ZnSnO3/PMMA) composite through electrospray deposition. J Mater Sci: Mater Electron 26, 5690–5696 (2015). https://doi.org/10.1007/s10854-015-3121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3121-1

Keywords

Navigation