Skip to main content
Log in

A 2015 perspective on the nature of the steady-state and transient electron transport within the wurtzite phases of gallium nitride, aluminum nitride, indium nitride, and zinc oxide: a critical and retrospective review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Wide energy gap semiconductors are broadly recognized as promising materials for novel electronic and optoelectronic device applications. As informed device design requires a firm grasp of the material properties of the underlying electronic materials, the electron transport that occurs within the wide energy gap semiconductors has been the focus of considerable study over the years. In an effort to provide some perspective on this rapidly evolving and burgeoning field of research, we review analyzes of the electron transport within some wide energy gap semiconductors of current interest in this paper. In order to narrow the scope of this review, we will primarily focus on the electron transport that occurs within the wurtzite phases of gallium nitride, aluminum nitride, indium nitride, and zinc oxide in this review, these materials being of great current interest to the wide energy gap semiconductor community; indium nitride, while not a wide energy gap semiconductor in of itself, is included as it is often alloyed with other wide energy gap semiconductors, the resultant alloys being wide energy gap semiconductors themselves. The electron transport that occurs within zinc-blende gallium arsenide is also considered, albeit primarily for bench-marking purposes. Most of our discussion will focus on results obtained from our ensemble semi-classical three-valley Monte Carlo simulations of the electron transport within these materials, our results conforming with state-of-the-art wide energy gap semiconductor orthodoxy. A brief tutorial on the Monte Carlo electron transport simulation approach, this approach being used to generate the results presented herein, is also provided. Steady-state and transient electron transport results are presented. The evolution of the field, and a survey of the current literature, are also featured. We conclude our review by presenting some recent developments on the electron transport within these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Notes

  1. Yoder [1] defines a wide energy gap semiconductor as being that possessing an energy gap equal to 2.2 eV or wider.

  2. In principle, SiC can crystallize in the form of an infinite number of polytypes. Thus far, over 250 polytypes of SiC have actually been experimentally observed [39].

  3. The more common polytypes of SiC possess wide and indirect energy gaps that range between 2.2 and 3 eV [51, 64, 65]. SiC is also found to exhibit a high breakdown field [66, 67], an elevated thermal conductivity [68, 69], and favorable electron transport characteristics [70]. This constellation of material properties associated with the various polytypes of SiC, and the recognition of the device opportunities thus engendered, was, in large measure, responsible for igniting interest into this material in the first place.

  4. InN, while not a wide energy gap semiconductor in of itself, its room temperature energy gap only being around 0.7 eV [71], is often alloyed with the other III–V nitride semiconductors, and thus, is often considered an honorary member of the wide energy gap semiconductor family [7275].

  5. Initial interest in the III–V nitride semiconductors focused on GaN, the wurtzite phase of this material exhibiting a wide and direct energy gap of around 3.39 eV [31]. Wurtzite GaN also exhibits a high breakdown field [103, 104], elevated thermal conductivity [105, 106], and superb electron transport characteristics [107110]. These attributes make GaN ideally suited for both electronic and optoelectronic device applications [111126].

  6. ZnO, while currently finding applications as a material for low-field thin-film transistor electron device structures [132] and as a potential material for transparent conducting electrodes [133], also possesses a direct energy gap [134, 135] with a magnitude that is very similar to that exhibited by GaN [136]. Thus, it might be expected that, with some further improvements in its material quality, ZnO may also be employed for some of the device roles currently implemented or envisaged for GaN.

  7. The wurtzite phases of GaN, AlN, InN, and ZnO are the most common forms of these materials, other crystalline forms also being available.

  8. All of the materials considered in this analysis possess direct energy gaps.

  9. Structurally, these reviews are quite similar, different materials and conditions being considered.

  10. This requires that the electron ensemble has settled on a new equilibrium state. By an equilibrium state, however, we are not necessarily referring to thermal equilibrium, thermal equilibrium only being achieved in the absence of an applied electric field.

  11. By electron drift velocity, we are referring to the average electron velocity, determined by statistically averaging over the entire electron ensemble.

  12. The results depicted in this review that are plotted as a function of the applied electric field strength are determined through an averaging process, over time and the electron ensemble, corresponding to each applied electric field strength selection. That is, for each selection of the applied electric field strength, a data point is determined, this data point corresponding to a time average over the ensemble of electrons for which the applied electric field strength has been held constant. The number of electrons in each simulation is such that the statistical fluctuations that occur, inherent to all Monte Carlo simulations, are sufficiently small that seemingly continuous plots arise, i.e., the Monte Carlo simulation points are sequentially connected in order to produce these plots. A similar approach is employed for the determination of the transient electron transport results, wherein a sequence of Monte Carlo simulation results are sequentially connected in order to produce these plots. The continuous nature of these plots arises as a consequence of the number of electrons employed in the simulation, i.e., sufficient in order to make the error sufficiently small. More on this matter is discussed in footnote 21.

  13. The Monte Carlo approach to simulating the electron transport within semiconductors has been employed by many authors. A Monte Carlo electron transport simulation resource, with source code included, may be found at https://nanohub.org/resources/moca. Further information about the Monte Carlo approach, beyond the electron transport context, may also be found at http://www.codeproject.com/Articles/767997/Parallelised-Monte-Carlo-Algorithms-sharp and http://www.codeproject.com/Articles/32654/Monte-Carlo-Simulation?q=Monte+Carlo+code.

  14. Albrecht et al. [135] generalize this relationship to include a second-order non-parabolicity coefficient that reduces to the traditional Kane model in the limit that this second-order non-parabolicity coefficient is set to zero. No dramatic impact on the results is observed.

  15. The longitudinal and transverse sound velocities are equal to

    $$\begin{aligned} \sqrt{\frac{C_{l}}{\rho }} \text{ and } \sqrt{\frac{C_{t}}{\rho }}, \end{aligned}$$

    respectively, where \(C_{l}\) and \(C_{t}\) denote the respective elastic constants and \(\rho \) represents the mass density.

  16. Piezoelectric scattering is treated using the well established zinc-blende scattering rates, and thus, a suitably transformed piezoelectric constant, \(\hbox {e}_{14}\), must be selected. This may be achieved through the transformation suggested by Bykhovski et al. [222, 223]. The \(\hbox {e}_{14}\) value selected for wurtzite GaN is that suggested by Chin et al. [147]. The \(\hbox {e}_{14}\) values selected for wurtzite InN and wurtzite ZnO are that corresponding to wurtzite GaN. AlN has a lager \(\hbox {e}_{14}\) value, as it has more pronounced piezoelectric properties; see O’Leary et al. [160] for a justification.

  17. All inter-valley deformation potentials are set to \(10^{9}\) eV/cm, following the approach of Gelmont et al. [146].

  18. We follow the approach of Bhapkar and Shur [151], and set the inter-valley phonon energies equal to the optical phonon energy, a relationship which holds approximately for the case of GaAs [224].

  19. Each conduction band structure is modeled as possessing three distinct “valleys,” each of the valley minima corresponding to a minima in the corresponding actual conduction band structure. These valleys are specified according to their locations in the band structures, the degeneracy of each valley, the effective mass of the electrons at each valley minimum, and the non-parabolicity coefficient corresponding to each valley.

  20. For the case of direct-gap semiconductors, the \(E_{o}\) energy gap corresponds with the regular energy gap, \(E_{g}\). For the case of indirect-gap semiconductors, the \(E_{o}\) energy gap exceeds \(E_{g}\). Adachi [15] refers to the \(E_{o}\) energy gap as the lowest direct-gap energy gap.

  21. The number of electrons employed in each simulation is determined through a consideration of the magnitude of the root-mean square error associated with the Monte Carlo simulation results. If the number of electrons is too small, then the root-mean square error, and the statistical fluctuations that arise as a consequence, become so large that the results obtained become difficult to discern from the background noise. Unfortunately, the use of large numbers of electrons dramatically increases the running time. In fact, in some cases, the computations demanded exceeded the capability of the hardware employed. For our purposes, the selection of the number of electrons to employ corresponds to a trade-off between the error, as determined by the root-mean square, and the running time. We find that for the steady-state electron transport simulations, the simulations are performed over longer periods of time, and thus, a smaller number of electrons are required for the error to be sufficiently low; for our specific case, three-thousand electrons is observed to work well for the steady-state electron transport simulations. In contrast, as the transient electron simulations occur over a shorter period of time, a larger number of electrons are required in order for the error to be sufficiently low; for our specific case, ten-thousand electrons is observed to work well for the transient electron transport simulations. Further details, related to this issue, are presented in the analysis of Jensen et al. [221].

  22. Intense interest into the material properties of the III–V nitride semiconductors, GaN, AlN, and InN, and into their corresponding device applications, began in earnest in the early 1990s [76].

  23. Interest in the material properties of ZnO began in earnest in the early-2000s [84].

  24. Interest in the material properties of ZnO was ignited later than that associated with GaN, primarily on account of material quality considerations, i.e., high-quality GaN was prepared earlier, and a lack of familiarity with means of effectively handling II–VI compound semiconductors, many GaN processing techniques being borrowed directly from the GaAs case.

  25. While every effort was made to provide a reasonable sampling of the electron transport literature corresponding to each material, some key references may have been neglected. We apologize to authors for these potential oversights.

  26. The results presented by O’Leary et al. [155] were built upon preliminary results presented previously, also by O’Leary et al. [232].

  27. In 1986, Tansley and Foley [279] measured the spectral dependence of the optical absorption coefficient associated with wurtzite InN and determined that the 300 K energy gap associated with this material is around 1.89 eV. This value became the defacto standard for the field until 2002, when Wu et al. [71] demonstrated, using higher quality forms of wurtzite InN, that the 300 K energy gap associated with this material is actually around 0.7 eV. Other experimental measurements confirmed the narrower energy gap value suggested by Wu et al. [71, 280, 281]. This revised value for the wurtzite InN energy gap is now widely accepted by the semiconductor materials community.

References

  1. M.N. Yoder, IEEE Trans. Electron Devices 43, 1633 (1996)

    Google Scholar 

  2. D. Jones, A.H. Lettington, Solid State Commun. 11, 701 (1972)

    Google Scholar 

  3. P. Das, D.K. Ferry, Solid-State Electron. 19, 851 (1976)

    Google Scholar 

  4. B.J. Baliga, IEEE Electron Device Lett. 10, 455 (1989)

    Google Scholar 

  5. M. Bhatnagar, B.J. Baliga, IEEE Trans. Electron Devices 40, 645 (1993)

    Google Scholar 

  6. T.P. Chow, R. Tyagi, IEEE Trans. Electron Devices 41, 1481 (1994)

    Google Scholar 

  7. J.W. Milligan, S. Sheppard, W. Pribble, Y.-F. Wu, St. G. Müller, J.W. Palmour, in Proc. 2007 IEEE Radar Conf., p. 960 (2007)

  8. A. BenMoussa, A. Soltani, U. Schühle, K. Haenen, Y.M. Chong, W.J. Zhang, R. Dahal, J.Y. Lin, H.X. Jiang, H.A. Barkad, B. BenMoussa, D. Bolsee, C. Hermans, U. Kroth, C. Laubis, V. Mortet, J.C. de Jaeger, B. Giordanengo, M. Richter, F. Scholze, J.F. Hochedez, Diam. Rel. Mater. 18, 860 (2009)

    Google Scholar 

  9. D.K. Schroder, Int. J. High Speed Electron. Syst. 21, 1250009 (2012)

    Google Scholar 

  10. D.K. Ferry, Phys. Rev. B 12, 2361 (1975)

    Google Scholar 

  11. M. Wraback, H. Shen, J.C. Carrano, T. Li, J.C. Campbell, M.J. Schurman, I.T. Ferguson, Appl. Phys. Lett. 76, 1155 (2000)

    Google Scholar 

  12. M. Wraback, H. Shen, J.C. Carrano, C.J. Collins, J.C. Campbell, R.D. Dupuis, M.J. Schurman, I.T. Ferguson, Appl. Phys. Lett. 79, 1303 (2001)

    Google Scholar 

  13. M. Wraback, H. Shen, S. Rudin, Proc. SPIE 4646, 117 (2002)

    Google Scholar 

  14. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (eds.), Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley, New York, 2001)

    Google Scholar 

  15. S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (Wiley, Chichester, 2005)

    Google Scholar 

  16. E.O. Johnson, in Proc. IEEE Int. Conv. Record, vol.13, p. 27 (1965)

  17. E.O. Johnson, RCA Rev. 26, 163 (1965)

    Google Scholar 

  18. R.W. Keyes, Proc. IEEE 60, 225 (1972)

    Google Scholar 

  19. J.L. Hudgins, G.S. Simin, E. Santi, M.A. Khan, IEEE Trans. Power Electron. 18, 907 (2003)

    Google Scholar 

  20. L.-M. Wang, in Proc. IEEE 25th Int. Conf. Microelectron. 2006, p. 615 (2006)

  21. D. Shaddock, L. Meyer, J. Tucker, S. Dasgupta, R. Fillion, P. Bronecke, L. Yorinks, P. Kraft, in Proc. \(19^{th}\) IEEE Semi.-Therm. Symposium, p. 42 (2003)

  22. H. Jain, S. Rajawat, P. Agrawal, in Proc. IEEE Int. Conf. Micro. 2008, p. 878 (2008)

  23. R.J. Trew, J.-B. Yan, P.M. Mock, Proc. IEEE 79, 598 (1991)

    Google Scholar 

  24. J.M. McGarrity, F.B. McLean, W.M. DeLancey, J. Palmour, C. Carter, J. Edmond, R.E. Oakley, IEEE Trans. Nucl. Sci. 39, 1974 (1992)

    Google Scholar 

  25. P.L. Dreike, D.M. Fleetwood, D.B. King, D.C. Sprauer, T.E. Zipperian, IEEE Trans. Comp. Pack. Manufactur. Technol. Part A 17, 594 (1994)

    Google Scholar 

  26. J.B. Casady, R.W. Johnson, Solid-State Electron. 39, 1409 (1996)

    Google Scholar 

  27. J.C. Zolper, in Proc. IEDM 1999, p. 389 (1999)

  28. J. Millán, IET Circuits Devices Syst. 1, 372 (2007)

    Google Scholar 

  29. V.V. Buniatyan, V.M. Aroutiounian, J. Phys D: Appl. Phys. 40, 6355 (2007)

    Google Scholar 

  30. J. Millán, P. Godignon, X. Perpiñà, A. Pérez-Tomás, J. Rebollo, IEEE Trans. Power Electron. 29, 2155 (2014)

    Google Scholar 

  31. H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)

    Google Scholar 

  32. R.N. Bhargava, IEEE Trans. Electron Devices 22, 691 (1975)

    Google Scholar 

  33. A.V. Nurmikko, R.L. Gunshor, IEEE J. Quant. Electron. 30, 619 (1994)

    Google Scholar 

  34. T. Matsuoka, A. Ohki, T. Ohno, Y. Kawaguchi, J. Cryst. Growth 138, 727 (1994)

    Google Scholar 

  35. M.A. Khan, M.S. Shur, Proc. SPIE 3006, 154 (1997)

    Google Scholar 

  36. Y.-S. Park, Proc. SPIE 4413, 282 (2001)

    Google Scholar 

  37. J. Wu, J. Appl. Phys. 106, 011101 (2009)

    Google Scholar 

  38. J. Han, H. Amano, L. Schowalter, Semicond. Sci. Technol. 29, 080301 (2014)

    Google Scholar 

  39. A.L. Ortiz, F. Sánchez-Bajo, F.L. Cumbrera, F. Guiberteau, J. Appl. Cryst. 46, 242 (2013)

    Google Scholar 

  40. Y. Kondo, T. Takahashi, K. Ishii, Y. Hayashi, E. Sakuma, S. Misawa, H. Daimon, M. Yamanaka, S. Yoshida, IEEE Electron Device Lett. 7, 404 (1986)

    Google Scholar 

  41. J.W. Palmour, H.S. Kong, R.F. Davis, Appl. Phys. Lett. 51, 2028 (1987)

    Google Scholar 

  42. T. Nakamura, K. Nanbu, T. Ishikawa, K. Kondo, J. Appl. Phys. 64, 2164 (1988)

    Google Scholar 

  43. G. Kelner, M.S. Shur, S. Binari, K.J. Sleger, H.-S. Kong, Trans. Electron Devices 36, 1045 (1989)

    Google Scholar 

  44. R.F. Davis, G. Kelner, M. Shur, J.W. Palmour, J.A. Edmond, Proc. IEEE 79, 677 (1991)

    Google Scholar 

  45. J.-W. Hong, N.-F. Shin, T.-S. Jen, S.-L. Ning, C.-Y. Chang, IEEE Electron Device Lett. 13, 375 (1992)

    Google Scholar 

  46. M. Bhatnagar, P.K. McLarty, B.J. Baliga, IEEE Electron Device Lett. 13, 501 (1992)

    Google Scholar 

  47. M. Ghezzo, D.M. Brown, E. Downey, J. Kretchmer, W. Hennessy, D.L. Polla, H. Bakhru, IEEE Electron Device Lett. 13, 639 (1992)

    Google Scholar 

  48. D.M. Brown, E.T. Downey, M. Ghezzo, J.W. Kretchmer, R.J. Saia, Y.S. Liu, J.A. Edmond, G. Gati, J.M. Pimbley, W.E. Schneider, IEEE Trans. Electron Devices 40, 325 (1993)

    Google Scholar 

  49. P.G. Neudeck, D.J. Larkin, J.E. Starr, J.A. Powell, C.S. Salupo, L.G. Matus, IEEE Electron Device Lett. 14, 136 (1993)

    Google Scholar 

  50. G.-B. Gao, J. Sterner, H. Morkoç, IEEE Trans. Electron Devices 41, 1092 (1994)

    Google Scholar 

  51. H. Morkoç, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76, 1363 (1994)

    Google Scholar 

  52. D.M. Brown, E. Downey, M. Ghezzo, J. Kretchmer, V. Krishnamurthy, W. Hennessy, G. Michon, Solid-State Electron. 39, 1531 (1996)

    Google Scholar 

  53. M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Proc. IEEE 86, 1594 (1998)

    Google Scholar 

  54. J.C. Zolper, Solid-State Electron. 42, 2153 (1998)

    Google Scholar 

  55. T.P. Chow, V. Khemka, J. Fedison, N. Ramungul, K. Matocha, Y. Tang, R.J. Gutmann, Solid-State Electron. 44, 277 (2000)

    Google Scholar 

  56. A. Elasser, T.P. Chow, Proc. IEEE 90, 969 (2002)

    Google Scholar 

  57. F. Ren, J.C. Zolper (eds.), Wide Energy Bandgap Electronic Devices (World Scientific, River Edge, 2003)

    Google Scholar 

  58. J.H. Zhao, Mater. Res. Soc. Bull. 30(4), 293 (2005)

    Google Scholar 

  59. Q. Zhang, R. Callanan, M.K. Das, S.-H. Ryu, A.K. Agarwal, J.W. Palmour, IEEE Trans. Power Electron. 25, 2889 (2010)

    Google Scholar 

  60. K. Schirmer, B. Rowden, H.A. Mantooth, S.S. Ang, J.C. Balda, ECS Trans. 41, 183 (2011)

    Google Scholar 

  61. R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, W.L. Pribble, IEEE Trans. Microw. Theory Tech. 60, 1764 (2012)

    Google Scholar 

  62. L. Lanni, R. Ghandi, B.G. Malm, C.-M. Zetterling, M. Östling, Trans. Electron Devices 59, 1076 (2012)

    Google Scholar 

  63. H.A. Mantooth, M.D. Glover, P. Shepherd, IEEE J. Emerg. Sel. Top. Power Electron. 2, 374 (2014)

    Google Scholar 

  64. H.R. Philipp, Phys. Rev. 111, 440 (1958)

    Google Scholar 

  65. V. Grivickas, J. Linnros, P. Grivickas, A. Galeckas, Mater. Sci. Eng. B 61–62, 197 (1999)

    Google Scholar 

  66. S. Nakamura, H. Kumagai, T. Kimoto, H. Matsunami, Appl. Phys. Lett. 80, 3355 (2002)

    Google Scholar 

  67. W. Bartsch, R. Schoerner, K.O. Dohnke, Mater. Sci. Forum 645–648, 909 (2010)

    Google Scholar 

  68. E.A. Burgemeister, W. von Muench, E. Pettenpaul, J. Appl. Phys. 50, 5790 (1979)

    Google Scholar 

  69. D.L. Barrett, R.G. Seidensticker, W. Gaida, R.H. Hopkins, W.J. Choyke, J. Cryst. Growth 109, 17 (1991)

    Google Scholar 

  70. R. Mickevičius, J.H. Zhao, J. Appl. Phys. 83, 3161 (1998)

    Google Scholar 

  71. J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002)

    Google Scholar 

  72. S.X. Li, J. Wu, E.E. Haller, W. Walukiewicz, W. Shan, H. Lu, W.J. Schaff, Appl. Phys. Lett. 83, 4963 (2003)

    Google Scholar 

  73. W. Walukiewicz, Phys. E 20, 300 (2004)

    Google Scholar 

  74. K. Bejtka, F. Rizzi, P.R. Edwards, R.W. Martin, E. Gu, M.D. Dawson, I.M. Watson, I.R. Sellers, F. Semond, Phys. Status Solidi A 202, 2648 (2005)

    Google Scholar 

  75. I. Gorczyca, T. Suski, N.E. Christensen, A. Svane, Appl. Phys. Lett. 96, 101907 (2010)

    Google Scholar 

  76. S. Strite, H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992)

    Google Scholar 

  77. S. Strite, M.E. Lin, H. Morkoç, Thin Solid Films 231, 197 (1993)

    Google Scholar 

  78. I. Akasaki, H. Amano, H. Murakami, M. Sassa, H. Kato, K. Manabe, J. Cryst. Growth 128, 379 (1993)

    Google Scholar 

  79. S.N. Mohammad, A.A. Salvador, H. Morkoç, Proc. IEEE 83, 1306 (1995)

    Google Scholar 

  80. S.N. Mohammad, H. Morkoç, Prog. Quantum Electron. 20, 361 (1996)

    Google Scholar 

  81. S. Porowski, J. Cryst. Growth 166, 583 (1996)

    Google Scholar 

  82. S.P. Denbaars, Proc. IEEE 85, 1740 (1997)

    Google Scholar 

  83. M.S. Shur, Solid-State Electron. 42, 2131 (1998)

    Google Scholar 

  84. S.J. Pearton, J.C. Zolper, R.J. Shul, F. Ren, J. Appl. Phys. 86, 1 (1999)

    Google Scholar 

  85. M.S. Shur, R.F. Davis (eds.), GaN-Based Materials and Devices: Growth, Fabrication, Characterization and Performance (World Scientific, River Edge, 2004)

    Google Scholar 

  86. C. Liu, F. Yun, H. Morkoç, J. Mater. Sci.: Mater. Electron. 16, 555 (2005)

    Google Scholar 

  87. M. Bockowski, Cryst. Res. Technol. 42, 1162 (2007)

    Google Scholar 

  88. R.P. Davies, C.R. Abernathy, S.J. Pearton, D.P. Norton, M.P. Ivill, F. Ren, Chem. Eng. Commun. 196, 1030 (2009)

    Google Scholar 

  89. R. Brazis, R. Raguotis, Phys. Status Solidi C 6, 2674 (2009)

    Google Scholar 

  90. J.A. del Alamo, J. Joh, Micro. Reliability 49, 1200 (2009)

    Google Scholar 

  91. H. Morkoç, Proc. IEEE 98, 1113 (2010)

    Google Scholar 

  92. A. Katz, M. Franco, IEEE Microw. Mag. 11, S24 (2010)

    Google Scholar 

  93. S.J. Pearton, C.R. Abernathy, F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (Springer, New York, 2010)

    Google Scholar 

  94. M. Razeghi, IEEE Photon. J. 3, 263 (2011)

    Google Scholar 

  95. F. Scholz, Semicond. Sci. Technol. 27, 024002 (2012)

    Google Scholar 

  96. Y. Hao, J. Zhang, B. Shen, X. Liu, J. Semicond. 33, 081001 (2012)

    Google Scholar 

  97. B.J. Baliga, Semicond. Sci. Technol. 28, 074011 (2013)

    Google Scholar 

  98. S. Nakamura, M.R. Krames, Proc. IEEE 101, 2211 (2013)

    Google Scholar 

  99. S.J. Pearton, R. Deist, F. Ren, L. Liu, A.Y. Polyakov, J. Kim, J. Vac. Sci. Technol. A 31, 050801 (2013)

    Google Scholar 

  100. S. Colangeli, A. Bentini, W. Ciccognani, E. Limiti, A. Nanni, IEEE Trans. Electron Devices 60, 3238 (2013)

    Google Scholar 

  101. T. Kachi, IEICE Electron. Express 10, 20132005 (2013)

    Google Scholar 

  102. D.W. Runton, B. Trabert, J.B. Shealy, R. Vetury, IEEE Microw. Mag. 14, 82 (2013)

    Google Scholar 

  103. D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys, S. Degroote, K. Cheng, M. Germain, G. Borghs, Appl. Phys. Lett. 97, 113501 (2010)

    Google Scholar 

  104. I.B. Rowena, S.L. Selvaraj, T. Egawa, IEEE Electron Device Lett. 32, 1534 (2011)

    Google Scholar 

  105. B.A. Danilchenko, I.A. Obukhov, T. Paszkiewicz, S. Wolski, A. Jeżowski, Solid State Commun. 144, 114 (2007)

    Google Scholar 

  106. K. Jagannadham, E.A. Berkman, N. Elmasry, J. Vac. Sci. Technol. A 26, 375 (2008)

    Google Scholar 

  107. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, J. Appl. Phys. 85, 7727 (1999)

    Google Scholar 

  108. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 118, 79 (2001)

    Google Scholar 

  109. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Electron. Mater. 32, 327 (2003)

    Google Scholar 

  110. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 17, 87 (2006)

    Google Scholar 

  111. S. Nakamura, Mater. Res. Soc. Bull. 22(2), 29 (1997)

    Google Scholar 

  112. M.S. Shur, M.A. Khan, Mater. Res. Soc. Bull. 22(2), 44 (1997)

    Google Scholar 

  113. A.A. Burk Jr, M.J. O’Loughlin, R.R. Siergiej, A.K. Agarwal, S. Sriram, R.C. Clarke, M.F. MacMillan, V. Balakrishna, C.D. Brandt, Solid-State Electron. 43, 1459 (1999)

    Google Scholar 

  114. S. Nakamura, S.F. Chichibu (eds.), Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes (Taylor and Francis, New York, 2000)

    Google Scholar 

  115. M.A. Khan, J.W. Yang, W. Knap, E. Frayssinet, X. Hu, G. Simin, P. Prystawko, M. Leszczynski, I. Grzegory, S. Porowski, R. Gaska, M.S. Shur, B. Beaumont, M. Teisseire, G. Neu, Appl. Phys. Lett. 76, 3807 (2000)

    Google Scholar 

  116. S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode: The Complete Story (Springer, New York, 2000)

    Google Scholar 

  117. M. Umeno, T. Egawa, H. Ishikawa, Mater. Sci. Semicond. Process. 4, 459 (2001)

    Google Scholar 

  118. A. Krost, A. Dadgar, Phys. Status Solidi A 194, 361 (2002)

    Google Scholar 

  119. A. Žukauskas, M.S. Shur, R. Gaska, Introduction to Solid-State Lighting (Wiley, New York, 2002)

    Google Scholar 

  120. X. Hu, J. Deng, N. Pala, R. Gaska, M.S. Shur, C.Q. Chen, J. Yang, G. Simin, M.A. Khan, J.C. Rojo, L.J. Schowalter, Appl. Phys. Lett. 82, 1299 (2003)

    Google Scholar 

  121. A. Jiménez, Z. Bougrioua, J.M. Tirado, A.F. Braña, E. Calleja, E. Muñoz, I. Moerman, Appl. Phys. Lett. 82, 4827 (2003)

    Google Scholar 

  122. W. Lu, V. Kumar, E.L. Piner, I. Adesida, IEEE Trans. Electron Devices 50, 1069 (2003)

    Google Scholar 

  123. C.L. Tseng, M.J. Youh, G.P. Moore, M.A. Hopkins, R. Stevens, W.N. Wang, Appl. Phys. Lett. 83, 3677 (2003)

    Google Scholar 

  124. J.C. Carrano, A. Zukauskas (eds.), Optically Based Biological and Chemical Sensing for Defense (SPIE, Bellingham, 2004)

    Google Scholar 

  125. M.S. Shur, A. Žukauskas (eds.), UV Solid-State Light Emitters and Detectors (Kluwer, Boston, 2004)

    Google Scholar 

  126. M. Shur, M. Shatalov, A. Dobrinsky, R. Gaska, GaN and ZnO-based Materials and Devices, in Materials and Devices Series in Materials Science, ed. by S. Pearton (Springer, Berlin, 2012), pp. 83–120

    Google Scholar 

  127. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Google Scholar 

  128. A. Ashrafi, C. Jagadish, J. Appl. Phys. 102, 071101 (2007)

    Google Scholar 

  129. H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Weinheim, 2009)

    Google Scholar 

  130. Ü. Özgür, D. Hofstetter, H. Morkoç, Proc. IEEE 98, 1255 (2010)

    Google Scholar 

  131. Y.-S. Choi, J.-W. Kang, D.-K. Hwang, S.-J. Park, IEEE Trans. Electron Devices 57, 26 (2010)

    Google Scholar 

  132. D.H. Levy, S.F. Nelson, J. Vac. Sci. Technol. A 30, 018501 (2012)

    Google Scholar 

  133. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Moroç, Super. Micro. 48, 458 (2010)

    Google Scholar 

  134. C.-K. Yang, K.S. Dy, Solid State Commun. 88, 491 (1993)

    Google Scholar 

  135. J.D. Albrecht, P.P. Ruden, S. Limpijumnong, W.R.L. Lambrecht, K.F. Brennan, J. Appl. Phys. 86, 6864 (1999)

    Google Scholar 

  136. J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, J. Narayan, J. Appl. Phys. 85, 7884 (1999)

    Google Scholar 

  137. H. Saitoh, W.A. Yarbrough, Diam. Rel. Mater. 1, 137 (1992)

    Google Scholar 

  138. M. Yano, M. Okamoto, Y.K. Yap, M. Yoshimura, Y. Mori, T. Sasaki, Diam. Rel. Mater. 9, 512 (2000)

    Google Scholar 

  139. C.-X. Wang, G.-W. Yang, T.-C. Zhang, H.-W. Liu, Y.-H. Han, J.-F. Luo, C.-X. Gao, G.-T. Zou, Appl. Phys. Lett. 83, 4854 (2003)

    Google Scholar 

  140. S. Miwa, K. Kimura, T. Yasuda, L.H. Kuo, S. Jin, K. Tanaka, T. Yao, Appl. Surf. Sci. 107, 184 (1996)

    Google Scholar 

  141. V.D. Ryzhikov, L.P. Gal’chinetskii, S.N. Galkin, K.A. Katrunov, E.K. Lisetskaya, Proc. SPIE 3359, 302 (1998)

    Google Scholar 

  142. M.A. Abdel-Rahim, M.M. Hafiz, A.E.B. Alwany, Opt. Laser Technol. 47, 88 (2013)

    Google Scholar 

  143. I. Friel, S.L. Clewes, H.K. Dhillon, N. Perkins, D.J. Twitchen, G.A. Scarsbrook, Diam. Rel. Mater. 18, 808 (2009)

    Google Scholar 

  144. P. Hess, J. Appl. Phys. 111, 051101 (2012)

    Google Scholar 

  145. M.A. Littlejohn, J.R. Hauser, T.H. Glisson, Appl. Phys. Lett. 26, 625 (1975)

    Google Scholar 

  146. B. Gelmont, K. Kim, M. Shur, J. Appl. Phys. 74, 1818 (1993)

    Google Scholar 

  147. V.W.L. Chin, T.L. Tansley, T. Osotchan, J. Appl. Phys. 75, 7365 (1994)

    Google Scholar 

  148. N.S. Mansour, K.W. Kim, M.A. Littlejohn, J. Appl. Phys. 77, 2834 (1995)

    Google Scholar 

  149. J. Kolník, İ.H. Oğuzman, K.F. Brennan, R. Wang, P.P. Ruden, Y. Wang, J. Appl. Phys. 78, 1033 (1995)

    Google Scholar 

  150. M. Shur, B. Gelmont, M.A. Khan, J. Electron. Mater. 25, 777 (1996)

    Google Scholar 

  151. U.V. Bhapkar, M.S. Shur, J. Appl. Phys. 82, 1649 (1997)

    Google Scholar 

  152. B.E. Foutz, L.F. Eastman, U.V. Bhapkar, M.S. Shur, Appl. Phys. Lett. 70, 2849 (1997)

    Google Scholar 

  153. E.G. Brazel, M.A. Chin, V. Narayanamurti, D. Kapolnek, E.J. Tarsa, S.P. DenBaars, Appl. Phys. Lett. 70, 330 (1997)

    Google Scholar 

  154. J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 1446 (1998)

    Google Scholar 

  155. S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, J. Appl. Phys. 83, 826 (1998)

    Google Scholar 

  156. D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105, 399 (1998)

    Google Scholar 

  157. J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 4777 (1998)

    Google Scholar 

  158. M.S. Krishnan, N. Goldsman, A. Christou, J. Appl. Phys. 83, 5896 (1998)

    Google Scholar 

  159. N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998)

    Google Scholar 

  160. S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, Solid State Commun. 105, 621 (1998)

    Google Scholar 

  161. J.D. Albrecht, R. Wang, P.P. Ruden, M. Farahmand, E. Bellotti, K.F. Brennan, Mater. Res. Soc. Symp. Proc. 482, 815 (1998)

    Google Scholar 

  162. I.A. Khan, J.A. Cooper Jr., Mater. Sci. Forum 264–268, 509 (1998)

    Google Scholar 

  163. R. Mickevičius, J.H. Zhao, Mater. Sci. Forum 264–268, 291 (1998)

    Google Scholar 

  164. R. Oberhuber, G. Zandler, P. Vogl, Appl. Phys. Lett. 73, 818 (1998)

    Google Scholar 

  165. N.A. Zakhleniuk, C.R. Bennett, B.K. Ridley, M. Babiker, Appl. Phys. Lett. 73, 2485 (1998)

    Google Scholar 

  166. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, Mater. Res. Soc. Symp. Proc. 572, 445 (1999)

    Google Scholar 

  167. J.H. Zhao, V. Gruzinskis, Y. Luo, M. Weiner, M. Pan, P. Shiktorov, E. Starikov, Semicond. Sci. Technol. 15, 1093 (2000)

    Google Scholar 

  168. V. Gruzinskis, Y. Luo, J. Zhao, M. Weiner, M. Pan, P. Shiktorov, E. Starikov, Mater. Sci. Forum 338–342, 1379 (2000)

    Google Scholar 

  169. M. Hjelm, K. Bertilsson, H.-E. Nilsson, Appl. Surf. Sci. 184, 194 (2001)

    Google Scholar 

  170. H.-E. Nilsson, E. Bellotti, M. Hjelm, K. Brennan, Math. Comp. Sim. 55, 199 (2001)

    Google Scholar 

  171. N. Balkan, M.C. Arikan, S. Gokden, V. Tilak, B. Schaff, R.J. Shealy, J. Phys.: Condens. Matter. 14, 3457 (2002)

    Google Scholar 

  172. H.-E. Nilsson, U. Englund, M. Hjelm, E. Bellotti, K. Brennan, J. Appl. Phys. 93, 3389 (2003)

    Google Scholar 

  173. M. Hjelm, H.-E. Nilsson, A. Martinez, K.F. Brennan, E. Bellotti, J. Appl. Phys. 93, 1099 (2003)

    Google Scholar 

  174. E. Bellotti, Proc. SPIE 4986, 589 (2003)

    Google Scholar 

  175. S. Gokden, N. Balkan, B.K. Ridley, Semicond. Sci. Technol. 18, 206 (2003)

    Google Scholar 

  176. S. Gökden, Phys. E 23, 198 (2004)

    Google Scholar 

  177. B.K. Ridley, W.J. Schaff, L.F. Eastman, J. Appl. Phys. 96, 1499 (2004)

    Google Scholar 

  178. B. Guo, U. Ravaioli, M. Staedele, Comp. Phys. Commun. 175, 482 (2006)

    Google Scholar 

  179. S. Kabra, H. Kaur, S. Haldar, M. Gupta, R.S. Gupta, Phys. Status Solidi C 3, 2350 (2006)

    Google Scholar 

  180. C.H. Oxley, M.J. Uren, A. Coates, D.G. Hayes, IEEE Trans. Electron Devices 53, 565 (2006)

    Google Scholar 

  181. B. Benbakhti, M. Rousseau, A. Soltani, J.-C. De Jaeger, IEEE Trans. Electron Devices 53, 2237 (2006)

    Google Scholar 

  182. Y. Tomita, H. Ikegami, H.I. Fujishiro, Phys. Status Solidi C 4, 2695 (2007)

    Google Scholar 

  183. M. Ramonas, A. Matulionis, L.F. Eastman, Semicond. Sci. Technol. 22, 875 (2007)

    Google Scholar 

  184. J. Khurgin, Y.J. Ding, D. Jena, Appl. Phys. Lett. 91, 252104 (2007)

    Google Scholar 

  185. F. Bertazzi, M. Goano, E. Bellotti, J. Electron. Mater. 36, 857 (2007)

    Google Scholar 

  186. S. Yamakawa, M. Saraniti, S.M. Goodnick, Proc. SPIE 6471, 64710M (2007)

    Google Scholar 

  187. A. Matulionis, J. Liberis, E. Šermukšnis, J. Xie, J.H. Leach, M. Wu, H. Morkoç, Semicond. Sci. Technol. 23, 075048 (2008)

    Google Scholar 

  188. E. Furno, F. Bertazzi, M. Goano, G. Ghione, E. Bellotti, Solid-State Electron. 52, 1796 (2008)

    Google Scholar 

  189. F. Bertazzi, E. Bellotti, E. Furno, M. Goano, J. Electron. Mater. 38, 1677 (2009)

    Google Scholar 

  190. A. Hamdoune, N.-E.C. Sari, Phys. Procedia 2, 905 (2009)

    Google Scholar 

  191. H. Arabshahi, M.R. Rokn-Abadi, F.B. Bagh-Siyahi, Res. J. Appl. Sci. 5, 215 (2010)

    Google Scholar 

  192. F. Bertazzi, M. Penna, M. Goano, E. Bellotti, Proc. SPIE 7603, 760303 (2010)

    Google Scholar 

  193. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 150, 2182 (2010)

    Google Scholar 

  194. Z. Yarar, J. Electron. Mater. 40, 466 (2011)

    Google Scholar 

  195. W.A. Hadi, S.K. O’Leary, M.S. Shur, L.F. Eastman, Solid State Commun. 151, 874 (2011)

    Google Scholar 

  196. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 033720 (2012)

    Google Scholar 

  197. W.A. Hadi, S. Chowdhury, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 123722 (2012)

    Google Scholar 

  198. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 2 (2013)

    Google Scholar 

  199. W.A. Hadi, P.K. Guram, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 113, 113709 (2013)

    Google Scholar 

  200. E. Baghani, S.K. O’Leary, J. Appl. Phys. 114, 023703 (2013)

    Google Scholar 

  201. S. Shishehchi, F. Bertazzi, E. Bellotti, Proc. SPIE 8619, 86190H (2013)

    Google Scholar 

  202. W.A. Hadi, E. Baghani, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1674, 2014. doi:10.1557/opl.2014.479

  203. J. Woźny, Z. Lisik, J. Podgórski, J. Phys. Conf. Ser. 494, 012005 (2014)

    Google Scholar 

  204. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 25, 4675 (2014)

    Google Scholar 

  205. B.R. Nag, Electron Transport in Compound Semiconductors (Springer, Berlin, 1980)

    Google Scholar 

  206. M. Shur, Physics of Semiconductor Devices (Prentice-Hall, Englewood Cliffs, 1990)

    Google Scholar 

  207. U.K. Mishra, J. Singh, Semiconductor Device Physics and Design (Springer, Dordrecht, 2008)

    Google Scholar 

  208. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    Google Scholar 

  209. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)

    Google Scholar 

  210. D.C. Look, J.R. Sizelove, S. Keller, Y.F. Wu, U.K. Mishra, S.P. DenBaars, Solid State Commun. 102, 297 (1997)

    Google Scholar 

  211. E.M. Conwell, M.O. Vassell, IEEE Trans. Electron Devices 13, 22 (1966)

    Google Scholar 

  212. P.A. Sandborn, A. Rao, P.A. Blakey, IEEE Trans. Electron Devices 36, 1244 (1989)

    Google Scholar 

  213. S. Zukotynski, W. Howlett, Solid-State Electron. 21, 35 (1978)

    Google Scholar 

  214. D.K. Ferry, C. Jacoboni (eds.), Quantum Transport in Semiconductors (Plenum Press, New York, 1992)

    Google Scholar 

  215. A. Papoulis, Probability, Random Variables, and Stochastic Processes, 3rd edn. (McGraw-Hill, New York, 1991)

    Google Scholar 

  216. R.M. Yorston, J. Comput. Phys. 64, 177 (1986)

    Google Scholar 

  217. W. Fawcett, A.D. Boardman, S. Swain, J. Phys. Chem. Solids 31, 1963 (1970)

    Google Scholar 

  218. B.K. Ridley, Quantum Processes in Semiconductors, 3rd edn. (Oxford, New York, 1993)

    Google Scholar 

  219. C. Jacoboni, L. Reggiani, Rev. Mod. Phys. 55, 645 (1983)

    Google Scholar 

  220. C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer, New York, 1989)

    Google Scholar 

  221. G.U. Jensen, B. Lund, T.A. Fjeldly, M. Shur, Comp. Phys. Commun. 67, 1 (1991)

    Google Scholar 

  222. A. Bykhovski, B. Gelmont, M. Shur, A. Khan, J. Appl. Phys. 77, 1616 (1995)

    Google Scholar 

  223. A.D. Bykhovski, V.V. Kaminski, M.S. Shur, Q.C. Chen, M.A. Khan, Appl. Phys. Lett. 68, 818 (1996)

    Google Scholar 

  224. M.A. Littlejohn, J.R. Hauser, T.H. Glisson, J. Appl. Phys. 48, 4587 (1977)

    Google Scholar 

  225. W.R.L. Lambrecht, B. Segall, in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, Edited by J. H. Edgar (Inspec, London, 1994), Chapter 4

  226. J.S. Blakemore, J. Appl. Phys. 53, R123 (1982)

    Google Scholar 

  227. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  228. M. Shur, S. Rumyantsev, M. Levinshtein (eds.), SiC Materials and Devices, vol. 1 (World Scientific, London, 2006)

    Google Scholar 

  229. P. Lugli, D.K. Ferry, IEEE Trans. Electron Devices 32, 2431 (1985)

    Google Scholar 

  230. K. Seeger, Semiconductor Physics: An Introduction, 9th edn. (Springer, Berlin, 2004)

    Google Scholar 

  231. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, U.V. Bhapkar, Mater. Res. Soc. Symp. Proc. 482, 821 (1998)

    Google Scholar 

  232. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, U.V. Bhapkar, Mater. Res. Soc. Symp. Proc. 482, 845 (1998)

    Google Scholar 

  233. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, Mater. Res. Soc. Symp. Proc. 512, 555 (1998)

    Google Scholar 

  234. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 87, 222103 (2005)

    Google Scholar 

  235. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 88, 152113 (2006)

    Google Scholar 

  236. W.A. Hadi, R. Cheekoori, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 807 (2013)

    Google Scholar 

  237. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 24, 1624 (2013)

    Google Scholar 

  238. J.G. Ruch, IEEE Trans. Electron Devices 19, 652 (1972)

    Google Scholar 

  239. M.S. Shur, L.F. Eastman, IEEE Trans. Electron Devices 26, 1677 (1979)

    Google Scholar 

  240. M. Heiblum, M.I. Nathan, D.C. Thomas, C.M. Knoedler, Phys. Rev. Lett. 55, 2200 (1985)

    Google Scholar 

  241. A. Palevski, M. Heiblum, C.P. Umbach, C.M. Knoedler, A.N. Broers, R.H. Koch, Phys. Rev. Lett. 62, 1776 (1989)

    Google Scholar 

  242. A. Palevski, C.P. Umbach, M. Heiblum, Appl. Phys. Lett. 55, 1421 (1989)

    Google Scholar 

  243. A. Yacoby, U. Sivan, C.P. Umbach, J.M. Hong, Phys. Rev. Lett. 66, 1938 (1991)

    Google Scholar 

  244. H. Ott, Zeitschr. Physik 22, 201 (1924)

    Google Scholar 

  245. G.S. Parks, C.E. Hablutzel, L.E. Webster, J. Am. Chem. Soc. 49, 2792 (1927)

    Google Scholar 

  246. E. Tiede, M. Thimann, K. Sensse, Chem. Berichte 61, 1568 (1928)

    Google Scholar 

  247. W.C. Johnson, J.B. Parsons, M.C. Crew, J. Phys. Chem. 36, 2651 (1932)

    Google Scholar 

  248. G. I. Finch, H. Wilman, J. Chem. Soc., 751 (1934)

  249. V.E. Cosslett, Nature 136, 988 (1935)

    Google Scholar 

  250. R. Juza, H. Hahn, Zeitschr. Anorgan. Allgem. Chem. 239, 282 (1938)

    Google Scholar 

  251. M.A. Khan, Q. Chen, C.J. Sun, M. Shur, B. Gelmont, Appl. Phys. Lett. 67, 1429 (1995)

    Google Scholar 

  252. S. Yoshida, S. Misawa, S. Gonda, J. Vac. Sci. Technol. B 1, 250 (1983)

    Google Scholar 

  253. H. Nakayama, P. Hacke, M.R.H. Khan, T. Detchprohm, K. Hiramatsu, N. Sawaki, Jpn. J. Appl. Phys. 35, L282 (1996)

    Google Scholar 

  254. C.A. Hurni, J.R. Lang, P.G. Burke, J.S. Speck, Appl. Phys. Lett. 101, 102106 (2012)

    Google Scholar 

  255. Z.C. Huang, R. Goldberg, J.C. Chen, Y. Zheng, D.B. Mott, P. Shu, Appl. Phys. Lett. 67, 2825 (1995)

    Google Scholar 

  256. S. Krishnamurthy, M. van Schilfgaarde, A. Sher, A.-B. Chen, Appl. Phys. Lett. 71, 1999 (1997)

    Google Scholar 

  257. A. Matulionis, J. Liberis, L. Ardaravičius, M. Ramonas, I. Matulionienė, J. Smart, Semicond. Sci. Technol. 17, L9 (2002)

    Google Scholar 

  258. C. Bulutay, B.K. Ridley, N.A. Zakhleniuk, Phys. Rev. B 68, 115205 (2003)

    Google Scholar 

  259. R. Brazis, R. Raguotis, Appl. Phys. Lett. 85, 609 (2004)

    Google Scholar 

  260. A.A.P. Silva, V.A. Nascimento, J. Lumin. 106, 253 (2004)

    Google Scholar 

  261. C.E. Martinez, N.M. Stanton, A.J. Kent, M.L. Williams, I. Harrison, H. Tang, J.B. Webb, J.A. Bardwell, Semicond. Sci. Technol. 21, 1580 (2006)

    Google Scholar 

  262. M. Tas, B. Tanatar, Phys. Status Solidi C 4, 372 (2007)

    Google Scholar 

  263. A. Matulionis, J. Liberis, IEE Proc. Circ. Dev. Syst. 151, 148 (2004)

    Google Scholar 

  264. M. Ramonas, A. Matulionis, J. Liberis, L. Eastman, X. Chen, Y.-J. Sun, Phys. Rev. B 71, 075324 (2005)

    Google Scholar 

  265. J.M. Barker, D.K. Ferry, S.M. Goodnick, D.D. Koleske, A. Allerman, R.J. Shul, Phys. Status Solidi C 2, 2564 (2005)

    Google Scholar 

  266. L. Ardaravičius, M. Ramonas, O. Kiprijanovic, J. Liberis, A. Matulionis, L.F. Eastman, J.R. Shealy, X. Chen, Y.J. Sun, Phys. Status Solidi A 202, 808 (2005)

    Google Scholar 

  267. Y. Chang, K.Y. Tong, C. Surya, Semicond. Sci. Technol. 20, 188 (2005)

    Google Scholar 

  268. S. Yamakawa, S.M. Goodnick, J. Branlard, M. Saraniti, Phys. Status Solidi C 2, 2573 (2005)

    Google Scholar 

  269. A. Reklaitis, L. Reggiani, J. Appl. Phys. 97, 043709 (2005)

    Google Scholar 

  270. L.F. Eastman, V. Tilak, J. Smart, B.M. Green, E.M. Chumbes, R. Dimitrov, H. Kim, O.S. Ambacher, N. Weimann, T. Prunty, M. Murphy, W.J. Schaff, J.R. Shealy, IEEE Trans. Electron Devices 48, 479 (2001)

    Google Scholar 

  271. C.H. Oxley, M.J. Uren, IEEE Trans. Electron Devices 52, 165 (2005)

    Google Scholar 

  272. M. Farahmand, C. Garetto, E. Bellotti, K.F. Brennan, M. Goano, E. Ghillino, G. Ghione, J.D. Albrecht, P.P. Ruden, IEEE Trans. Electron Devices 48, 535 (2001)

    Google Scholar 

  273. M.A. Osman, Proc. SPIE 4280, 109 (2001)

    Google Scholar 

  274. T. Li, R.P. Joshi, R.D. del Rosario, IEEE Trans. Electron Devices 49, 1511 (2002)

    Google Scholar 

  275. C. Sevik, C. Bulutay, IEE Proc. Optoelectron. 150, 86 (2003)

    Google Scholar 

  276. J. Edwards, K. Kawabe, G. Stevens, R.H. Tredgold, Solid State Commun. 3, 99 (1965)

    Google Scholar 

  277. V.M. Polyakov, F. Schwierz, I. Cimalla, M. Kittler, B. Lübbers, A. Schober, J. Appl. Phys. 106, 023715 (2009)

    Google Scholar 

  278. E. Bellotti, B.K. Doshi, K.F. Brennan, J.D. Albrecht, P.P. Ruden, J. Appl. Phys. 85, 916 (1999)

    Google Scholar 

  279. T.L. Tansley, C.P. Foley, J. Appl. Phys. 59, 3241 (1986)

    Google Scholar 

  280. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002)

    Google Scholar 

  281. J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, S.X. Li, E.E. Haller, H. Lu, W.J. Schaff, J. Appl. Phys. 94, 4457 (2003)

    Google Scholar 

  282. V.M. Polyakov, F. Schwierz, Appl. Phys. Lett. 88, 032101 (2006)

    Google Scholar 

  283. Z. Yarar, Phys. Status Solidi B 244, 3711 (2007)

    Google Scholar 

  284. V.M. Polyakov, F. Schwierz, F. Fuchs, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 94, 022102 (2009)

    Google Scholar 

  285. J.S. Thakur, R. Naik, V.M. Naik, D. Haddad, G.W. Auner, H. Lu, W.J. Schaff, J. Appl. Phys. 99, 023504 (2006)

    Google Scholar 

  286. A. Ilgaz, S. Gökden, R. Tülek, A. Teke, S. Özçelik, E. Özbay, Eur. Phys. J. Appl. Phys. 55, 30102 (2011)

    Google Scholar 

  287. D.R. Naylor, A. Dyson, B.K. Ridley, Solid State Commun. 152, 549 (2012)

    Google Scholar 

  288. D.R. Naylor, A. Dyson, B.K. Ridley, J. Appl. Phys. 111, 053703 (2012)

    Google Scholar 

  289. E. Bellotti, F. Bertazzi, S. Shishehchi, M. Matsubara, M. Goano, IEEE Trans. Electron Devices 60, 3204 (2013)

    Google Scholar 

  290. S. Dasgupta, J. Lu, Nidhi, A. Raman, C. Hurni, G. Gupta, J.S. Speck, U.K. Mishra, Appl. Phys. Express 6, 034002 (2013)

  291. J.-Z. Zhang, A. Dyson, B.K. Ridley, Appl. Phys. Lett. 102, 062104 (2013)

    Google Scholar 

  292. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 21, 218 (2010)

    Google Scholar 

  293. E. Baghani, S.K. O’Leary, Appl. Phys. Lett. 99, 262106 (2011)

    Google Scholar 

  294. W.A. Hadi, P. Siddiqua, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 25, 5524 (2014)

    Google Scholar 

  295. P. Siddiqua, W.A. Hadi, A.K. Salhotra, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 117, 125705 (2015)

    Google Scholar 

  296. W.A. Hadi, M. Shur, L.F. Eastman, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1327 (2011). doi:10.1557/opl.2011.851

  297. W.A. Hadi, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1577 (2013). doi:10.1557/opl.2013.534

  298. W.A. Hadi, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1577 (2013). doi:10.1557/opl.2013.535

  299. W.A. Hadi, E. Baghani, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. 1577 (2013). doi:10.1557/opl.2013.649

  300. P. Siddiqua, W.A. Hadi, M.S. Shur, S.K. O’Leary, Mater. Res. Soc. Symp. Proc. (submitted)

Download references

Acknowledgments

Financial support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. The work performed at Rensselaer Polytechnic Institute was supported by the Army Research Laboratory under the auspices of the ARL MSME Alliance program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. O’Leary.

Additional information

Many of the results presented herein, and portions of the text, are borrowed from our previous review articles, i.e., “Steady-state and transient electron transport within the III–V nitride semiconductors, GaN, AlN, and InN: a review,” which was published in the Journal of Materials Science: Materials in Electronics in 2006 [110] and “Steady-state and transient electron transport within the wide energy gap compound semiconductors gallium nitride and zinc oxide: an updated and critical review,” which was published in the Journal of Materials Science: Materials in Electronics in 2014 [204]. Copyright permission, for the figures, tables, and text, was obtained from Springer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqua, P., Hadi, W.A., Shur, M.S. et al. A 2015 perspective on the nature of the steady-state and transient electron transport within the wurtzite phases of gallium nitride, aluminum nitride, indium nitride, and zinc oxide: a critical and retrospective review. J Mater Sci: Mater Electron 26, 4475–4512 (2015). https://doi.org/10.1007/s10854-015-3055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3055-7

Keywords

Navigation