Skip to main content
Log in

Low loss (Ba1−xSrx)(Co1/3Nb2/3)O3 solid solution: phase evolution, microstructure and microwave dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Ba1−xSrx)(Co1/3Nb2/3)O3 (0 ≤ x ≤ 0.5) microwave dielectric ceramics had been prepared using the solid-state reaction method. The dense microstructures with small grains were obtained. All Sr2+ substituted samples exhibited the perovskite phase. The structure transition from cubic to hexagonal occurred with the increase of x, which led to higher degree of 1:2 ordered structure in the B site. The improved Q × f value was correlated monotonously with the ordering parameters S. The dielectric constant (ε r ) and the temperature coefficient of resonant frequency (τ f ) could be effectively tuned by tailoring x. A good combination of microwave dielectric properties was obtained for (Ba0.95Sr0.05)(Co1/3Nb2/3)O3 sintered at 1380 °C: ε r  = 33.3, Q × f = 87,120 GHz, τ f  = 4 ppm/°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Nomura, Ferroelectrics 49(1), 61 (1983)

    Article  Google Scholar 

  2. W. Wersing, Curr. Opin. Solid State Mater. Sci. 1(5), 715 (1996)

    Article  Google Scholar 

  3. R.J. Cava, J. Mater. Chem. 11(1), 54 (2001)

    Article  Google Scholar 

  4. S.J. Fiedziuszko, Y. Kobayashi, K. Wakino, IEEE Trans. Microw. Theory 50(3), 706 (2002)

    Article  Google Scholar 

  5. X.G. Huang, J. Zhang, S.R. Xiao, G.S. Chen, J. Am. Ceram. Soc. 97(5), 1363 (2014)

    Article  Google Scholar 

  6. M.H. Liang, C.T. Hu, H.F. Cheng, I.N. Lin, J. Steeds, J. Eur. Ceram. Soc. 21(15), 2759 (2001)

    Article  Google Scholar 

  7. C.L. Huang, C.S. Hsu, S.J. Liu, Mater. Lett. 57(22–23), 3602 (2003)

    Article  Google Scholar 

  8. M.R. Varma, M.T. Sebastian, J. Eur. Ceram. Soc. 27(8–9), 2827 (2007)

    Article  Google Scholar 

  9. H. Zhang, C.L. Diao, S.L. Liu, S.Z. Jiang, X.P. Jing, F. Shi, Ceram. Int. 40, 2427 (2014)

    Article  Google Scholar 

  10. M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Amsterdam, London, 2008)

    Google Scholar 

  11. Y.K. Kim, K.M. Lee, H.M. Jang, J. Mater. Sci. 35(19), 4885 (2000)

    Article  Google Scholar 

  12. I.M. Reaney, Y. Iqbal, H. Zheng, A. Feteira, H. Hughes, D. Iddles, D. Muir, T. Price, J. Eur. Ceram. Soc. 25(7), 1183 (2005)

    Article  Google Scholar 

  13. S. Kawashima, M. Nishida, I. Ueda, H. Ouchi, J. Am. Ceram. Soc. 66(6), 421 (1983)

    Article  Google Scholar 

  14. D.A. Sagala, S. Nambu, J. Am. Ceram. Soc. 75(9), 2573 (1992)

    Article  Google Scholar 

  15. C.T. Lee, Y.C. Lin, C.Y. Huang, C.Y. Su, C.L. Hu, J. Am. Ceram. Soc. 90(2), 483 (2007)

    Article  Google Scholar 

  16. H.F. Zhou, X.L. Chen, L. Fang, W. Wang, Ceram. Int. 40, 3737 (2014)

    Article  Google Scholar 

  17. O. Ovchar, D. Durylin, A. Belous, B. Jancar, Korodiazhnyi, Mater. Sci. Pol. 29(1), 56 (2011)

    Article  Google Scholar 

  18. P.P. Ma, L. Yi, X.Q. Liu, L. Li, X.M. Chen, J. Am. Ceram. Soc. 96(6), 1795 (2013)

    Article  Google Scholar 

  19. M.S. Fu, X.Q. Liu, X.M. Chen, Y.W. Chen, Y.W. Zeng, J. Am. Ceram. Soc. 93(3), 787 (2010)

    Article  Google Scholar 

  20. C.C. You, C.L. Huang, C.C. Wei, J.W. Huang, Jpn. J. Appl. Phys. 34, 1911 (1995)

    Article  Google Scholar 

  21. C.W. Ahn, S. Nahm, Y.S. Lim, W. Choi, H.M. Park, H.J. Lee, Jpn. J. Appl. Phys. 41, 5277 (2002)

    Article  Google Scholar 

  22. C.W. Ahn, H.J. Jang, S. Nahm, H.M. Park, H.J. Lee, J. Eur. Ceram. Soc. 23(14), 2473 (2003)

    Article  Google Scholar 

  23. F. Azough, C. Leach, R. Freer, J. Eur. Ceram. Soc. 26(14), 2877 (2006)

    Article  Google Scholar 

  24. N. Toru, I. Takayuki, S. Masaaki, Jpn. J. Appl. Phys. 31, 3132 (1992)

    Article  Google Scholar 

  25. I.M. Reaney, E.L. Colla, N. Setter, Jpn. J. Appl. Phys. 33, 3984 (1994)

    Article  Google Scholar 

  26. M.W. Lufaso, Chem. Mater. 16(11), 2148 (2004)

    Article  Google Scholar 

  27. J. Venkatesh, V.R. Murthy, Jpn. J. Appl. Phys. 50(021501), 1–6 (2011)

    Google Scholar 

  28. N. Setter, L.E. Cross, J. Mater. Sci. 15(10), 2478 (1980)

    Article  Google Scholar 

  29. X.W. Zhang, Q. Wang, B.L. Gu, J. Am. Ceram. Soc. 74(11), 2846 (1991)

    Article  Google Scholar 

  30. B.W. Hakki, P.D. Coleman, IEEE Trans. Microw. Theory Tech. 8, 402 (1960)

    Article  Google Scholar 

  31. W.E. Courtney, IEEE Trans. Microw. Theory Tech. 18, 476 (1970)

    Article  Google Scholar 

  32. B.E. Warren, X-Ray Diffraction (Dover Publication, New York, 1969), p. 208

    Google Scholar 

  33. B.D. Cullity, Elements of X-ray Jiffraction (Addison-Wesley Publishing, Reading, 1978)

    Google Scholar 

  34. Y.N. Wang, M.D. Chen, Ferroelectr. Lett. 40, 121 (2013)

    Article  Google Scholar 

  35. C.H. Hsun, S.H. Tsai, Ceram. Int. 40, 10111 (2014)

    Article  Google Scholar 

  36. M.Y. Chen, C.T. Chia, I.N. Lin, L.J. Lin, C.W. Ahn, S. Nahm, J. Eur. Ceram. Soc. 26(10–11), 1965 (2006)

    Article  Google Scholar 

  37. C.T. Chia, Y.C. Chen, H.F. Cheng, J. Appl. Phys. 94, 3360 (2003)

    Article  Google Scholar 

  38. A. Dias, F.M. Matinaga, R.L. Moreira, Chem. Mater. 19(9), 2335 (2007)

    Article  Google Scholar 

  39. Z.J. Gong, Z.F. Wang, L.X. Wang, Z.X. Fu, W. Han, Q.T. Zhang, Electron. Mater. Lett. 9(3), 331 (2013)

    Article  Google Scholar 

  40. Y.Y. Zhou, S.Q. Meng, H.C. Wu, Z.X. Yue, J. Am. Ceram. Soc. 94(9), 2933 (2011)

    Article  Google Scholar 

  41. E.L. Colla, I.M. Reaney, N. Setter, J. Appl. Phys. 74(5), 3414 (1993)

    Article  Google Scholar 

  42. R.D. Shannon, J. Appl. Phys. 73(1), 348 (1993)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Scientific Innovation Research of College Graduate in Jiangsu province (Project No. CXLX13_403), the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (Project No. SKL201309SIC) and Science and Technology Projects of Guangdong Province (Project No. 2011A091103002). College Industrialization Project of Jiangsu Province (JHB2012-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qitu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Huang, B., Wang, L. et al. Low loss (Ba1−xSrx)(Co1/3Nb2/3)O3 solid solution: phase evolution, microstructure and microwave dielectric properties. J Mater Sci: Mater Electron 26, 4273–4279 (2015). https://doi.org/10.1007/s10854-015-2978-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2978-3

Keywords

Navigation