Skip to main content

Advertisement

Log in

Growth of ZnO nanorods and nanosheets by electrodeposition and their applications in dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An electrochemical deposition process was used to synthesize zinc oxide (ZnO) nanorod and nanosheet structures on indium tin oxide substrate, which could tailored by a simple chemical route without templates and capping agents. The DSSCs based on three-dimensional (3D) ZnO nanosheet network structures showed more superior photoelectrochemical performance than that based on one-dimensional ZnO nanorods. The conversion efficiency of 1.59 % achieved by the DSSCs based on 3D ZnO nanosheet network structures. The improvement can be attributed to the enhanced dye loading, which is caused by the enlargement of internal surface area within the nanostructure photoelectrode. Furthermore, the polarity effects play a significant role on the photo-conversion efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991)

    Article  Google Scholar 

  2. K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, H. Arakawa, A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6 %. Chem. Commun. 6, 569–570 (2001)

    Article  Google Scholar 

  3. S. Ito, T. Kitamura, Y. Wada, S. Yanagida, Facile fabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating. Sol. Energy Mater. Sol. Cells 76, 3–13 (2003)

    Article  Google Scholar 

  4. K.M. Lee, V. Suryanarayanan, K.C. Ho, A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91, 1416–1420 (2007)

    Article  Google Scholar 

  5. M.S. Akhtar, M.A. Khan, M.S. Jeon, O.-B. Yang, Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochim. Acta 53, 7869–7874 (2008)

    Article  Google Scholar 

  6. E.M. Kaidashev, M. Lorenz, H. Wenckstern, A. Rahm, H.C. Semmelhack, K.H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Appl. Phys. Lett. 82, 3901–3903 (2003)

    Article  Google Scholar 

  7. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)

    Article  Google Scholar 

  8. R. Katoh, A. Furube, A.V. Barzykin, H. Arakawa, M. Tachiya, Kinetics and mechanism of electron injection and charge recombination in dye-sensitized nanocrystalline semiconductors. Coord. Chem. Rev. 248, 1195–1213 (2004)

    Article  Google Scholar 

  9. Q.F. Zhang, T.P. Chou, B. Russo, S.A. Jenekhe, G.Z. Cao, Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Adv. Funct. Mater. 18, 1654–1660 (2008)

    Article  Google Scholar 

  10. W. Lee, S.K. Min, V. Dhas, S.B. Ogale, S.-H. Han, Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells. Electrochem. Commun. 11, 103–106 (2009)

    Article  Google Scholar 

  11. J.L. Gomez, O. Tigli, Zinc oxide nanostructures: from growth to application. J. Mater. Sci. 48, 612–624 (2013)

    Article  Google Scholar 

  12. Y.J. Lee, D.S. Ruby, D.W. Peters, B.B. McKenzie, J.W.P. Hsu, ZnO nanostructures as efficient antireflection layers in solar cells. Nano Letters 8, 1501–1505 (2008)

    Article  Google Scholar 

  13. T.W. Hamann, A.B.F. Martinson, J.W. Elam, M.J. Pellin, J.T. Hupp, Aerogel templated ZnO dye-sensitized solar cells. Adv. Mater. 20, 1560–1564 (2008)

    Article  Google Scholar 

  14. K. Wang, J.J. Chen, W.L. Zhou, Y. Zhang, Y.F. Yan, J. Pern, A. Mascarenhas, Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications. Adv. Mater. 20, 3248–3253 (2008)

    Article  Google Scholar 

  15. Y. Gao, M. Nagai, T.-C. Chang, J.-J. Shyue, Solution-derived ZnO nanowire array film as photoelectrode in dye-sensitized solar cells. Cryst. Growth Des. 7, 2467–2471 (2007)

    Article  Google Scholar 

  16. M. Guo, P. Diao, X. Wang, S.M.J. Cai, The effect of hydrothermal growth temperature on preparation and photoelectrochemical performance of ZnO nanorod array films. Solid State Chem. 178, 3210–3215 (2005)

    Article  Google Scholar 

  17. M. Guo, P. Diao, S.M. Cai, Photoelectrochemical properties of highly oriented ZnO nanotube array films on ITO substrates. Chin. Chem. Lett. 15, 1113–1116 (2004)

    Google Scholar 

  18. C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 90, 263501 (2007)

    Article  Google Scholar 

  19. H. Chen, W. Li, Q. Hou, H. Liu, L. Zhu, Growth of three-dimensional ZnO nanorods by electrochemical method for quantum dots-sensitized solar cells. Electrochim. Acta 56, 8358–8364 (2011)

    Article  Google Scholar 

  20. J. Ferber, J. Luther, Computer simulations of light scattering and absorption in dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 54, 265–275 (1998)

    Article  Google Scholar 

  21. A. Usami, Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrichemical cell. Chem. Phys. Lett. 277, 105–108 (1997)

    Article  Google Scholar 

  22. G. Rothenberger, P. Comte, M. Grätzel, A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol. Energy Mater. Sol. Cells 58, 321–336 (1999)

    Article  Google Scholar 

  23. Y.-Z. Zheng, X. Tao, L.-X. Wang, H. Xu, Q. Hou, W.-L. Zhou, J.-F. Chen, Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells. Chem. Mater. 22, 928–934 (2010)

    Article  Google Scholar 

  24. B. Liu, H.C. Zeng, Fabrication of ZnO “dandelions” via a modified Kirkendall process. J. Am. Chem. Soc. 126, 16744–16746 (2004)

    Article  Google Scholar 

  25. M. Mo, J.C. Yu, L. Zhang, S.-K.A. Li, Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv. Mater. 17, 756–760 (2005)

    Article  Google Scholar 

  26. Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001)

    Article  Google Scholar 

  27. M.H. Huang, Y.Y. Wu, H.N. Feick, N. Tran, E. Weber, P.D. Yang, Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 13, 113–116 (2001)

    Article  Google Scholar 

  28. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001)

    Article  Google Scholar 

  29. L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 105, 3350–3352 (2001)

    Article  Google Scholar 

  30. L. Vayssieres, K. Keis, A. Hagfeldt, S.E. Lindquist, Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 13, 4395–4398 (2001)

    Article  Google Scholar 

  31. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003)

    Article  Google Scholar 

  32. J.B. Baxter, E.S. Aydil, Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol. Energy Mater. Sol. Cells 90, 607–622 (2006)

    Article  Google Scholar 

  33. D.I. Suh, S.Y. Lee, T.H. Kim, J.M. Chun, E.K. Suh, O.B. Yang, S.K. Lee, The fabrication and characterization of dye-sensitized solar cells with a branched structure of ZnO nanowires. Chem. Phys. Lett. 442, 348–353 (2007)

    Article  Google Scholar 

  34. Y.B. Li, M.J. Zheng, L. Ma, M. Zhong, W.Z. Shen, Fabrication of hierarchical ZnO architectures and their superhydrophobic surfaces with strong adhesive force. Inorg. Chem. 47, 3140–3143 (2008)

    Article  Google Scholar 

  35. J.Y. Lao, J.G. Wen, Z.F. Ren, Hierarchical ZnO nanostructures. Nano Lett. 2, 1287–1291 (2002)

    Article  Google Scholar 

  36. P.X. Gao, Z.L. Wang, Self-assembled nanowire–nanoribbon junction arrays of ZnO. J. Phys. Chem. B 106, 12653–12658 (2002)

    Article  Google Scholar 

  37. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, ZnO nanobridges and nanonails. Nano Lett. 3, 235–238 (2003)

    Article  Google Scholar 

  38. C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, J.X. Wang, Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode. Appl. Phys. Lett. 90, 263501 (2007)

    Article  Google Scholar 

  39. H.M. Cheng, W.H. Chiu, C.H. Lee, S.Y. Tsai, W.F. Hsieh, Formation of branched ZnO nanowires from solvothermal method and dye-sensitized solar cells applications. J. Phys. Chem. C 112, 16359–16364 (2008)

    Article  Google Scholar 

  40. T.R. Zhang, W.J. Dong, M. Keeter-Brewer, S. Konar, R.N. Njabon, Z.R. Tian, Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J. Am. Chem. Soc. 128, 10960–10968 (2006)

    Article  Google Scholar 

  41. L.F. Xu, Q.W. Chen, D.S. Xu, Hierarchical ZnO nanostructures obtained by electrodeposition. J. Phys. Chem. C 111, 11560–11565 (2007)

    Article  Google Scholar 

  42. J. Qiu, M. Guo, X. Wang, Electrodeposition of hierarchical ZnO nanorod–nanosheet structures and their applications in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3, 2358–2367 (2011)

    Article  Google Scholar 

  43. S. Peulon, D. Lincot, Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions. J. Electrochem. Soc. 145, 864–874 (1998)

    Article  Google Scholar 

  44. M. Izaki, T. Omi, Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. 68, 2439–2440 (1996)

    Article  Google Scholar 

  45. T. Pauporte, D. Lincot, Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition I. Deposition in perchlorate medium. J. Electrochem. Soc. 148, C310–C314 (2001)

    Article  Google Scholar 

  46. D. Pradhan, K.T. Leung, Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition. Langmuir 24, 9707–9716 (2008)

    Article  Google Scholar 

  47. R. Tena-Zaera, J. Elias, G. Wang, C. Levy-Clement, Role of chloride ions on electrochemical deposition of ZnO nanowire arrays from O2 reduction. J. Phys. Chem. C 111, 16706–16711 (2007)

    Article  Google Scholar 

  48. J. Elias, R. Tena-Zaera, C. Levy-Clement, Effect of the chemical nature of the anions on the electrodeposition of ZnO nanowire arrays. J. Phys. Chem. C 112, 5736–5741 (2008)

    Article  Google Scholar 

  49. D. Pradhan, M. Kumar, Y. Ando, K.T. Leung, Fabrication of ZnO nanospikes and nanopillars on ITO glass by templateless seed-layer-free electrodeposition and their field-emission properties. ACS Appl. Mater. Interfaces 1, 789–796 (2009)

    Article  Google Scholar 

  50. T. Pauporte, G. Bataille, L. Joulaud, F.J. Vermersch, Well-aligned ZnO nanowire arrays prepared by seed-layer-free electrodeposition and their Cassie–Wenzel transition after hydrophobization. J. Phys. Chem. C 114, 194–202 (2010)

    Article  Google Scholar 

  51. H. El Belghiti, T. Pauporte, D. Lincot, Mechanistic study of ZnO nanorod array electrodeposition. Phys. Status Solidi A 205, 2360–2364 (2008)

    Article  Google Scholar 

  52. D. Pradhan, K.T. Leung, Vertical growth of two-dimensional zinc oxide nanostructures on ITO-coated glass: effects of deposition temperature and deposition time. J. Phys. Chem. C 112, 1357–1364 (2008)

    Article  Google Scholar 

  53. Y.-K. Hsu, Y.-G. Lin, Y.-C. Chen, Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting. Electrochem. Commun. 13, 1383–1386 (2011)

    Article  Google Scholar 

  54. A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131, 12540–12541 (2009)

    Article  Google Scholar 

  55. G. Bruno, M.M. Giangregorio, G. Malandrino, P. Capezzuto, I.L. Fragala, M. Losurdo, Is there a ZnO face stable to atomic hydrogen? Adv. Mater. 21, 1700–1706 (2009)

    Article  Google Scholar 

  56. H. Fu, T. Xu, S. Zhu, Y. Zhu, Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C. Environ. Sci. Technol. 42, 8064–8069 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support from the Natural Science Foundation of Qinghai province (2013-Z-924Q and 2013-Z-901), and Chunhui Project of the Ministry of Education (Z2012109 and Z2012110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Long Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, YL., Yuan, J., Song, P. et al. Growth of ZnO nanorods and nanosheets by electrodeposition and their applications in dye-sensitized solar cells. J Mater Sci: Mater Electron 26, 3868–3873 (2015). https://doi.org/10.1007/s10854-015-2913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2913-7

Keywords

Navigation