Skip to main content
Log in

Effects of Sr substitution on the structural, dielectric, ferroelectric, and piezoelectric properties of Ba(Zr,Ti)O3 lead-free ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have systematically studied the effects of Sr substitution on the microstructure, crystal structure, Curie temperature, dielectric, ferroelectric, and piezoelectric properties of (Ba1−x Sr x )(Zr0.05Ti0.95)O3 (0 ≤ x ≤ 0.40) ceramics prepared by the conventional solid-state reaction method. Both X-ray diffraction and dielectric measurements reveal that with increasing Sr content, the room-temperature crystal structure of the samples evolves from tetragonal to orthorhombic around x = 0.2 where the two phases coexist. Dielectric measurements show that Sr doping significantly reduces the Curie temperature (T C ) linearly from 114 °C for x = 0 to 10 °C for x = 0.4 with dT C /dx ≈ −265 °C/mol. Moreover, Sr doping causes linear shrinkage of the lattice constants and unit cell volume as well as considerable changes in the ferroelectric and piezoelectric properties. At room temperature, the sample with x = 0.11 exhibits enhanced piezoelectric properties with d 33 ~ 380 pC/N and the planar mode electromechanical coupling coefficient k p  = 0.38. Our results provide useful reference for the optimization of Ba(Zr,Ti)O3-based lead-free piezoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Toda, J. Appl. Phys. 43, 261 (1972)

    Article  Google Scholar 

  2. X.S. Wang, H. Yamada, C.N. Xu, Appl. Phys. Lett. 86, 022905 (2005)

    Article  Google Scholar 

  3. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256–263 (2004)

    Article  Google Scholar 

  4. T. Maiti, R. Guo, A.S. Bhala, Appl. Phys. Lett. 89, 122909 (2006)

    Article  Google Scholar 

  5. W. Zhong, D. Vanerbilt, K.M. Rabe, Phys. Rev. Lett. 73, 1861 (1994)

    Article  Google Scholar 

  6. S. Saha, T.P. Sinha, A. Mookerjee, Phys. Rev. B 62, 8828 (2000)

    Article  Google Scholar 

  7. R.E. Cohen, Nature 358, 136–138 (1992)

    Article  Google Scholar 

  8. M.H. Frey, D.A. Payne, Phys. Rev. B 54, 3158 (1996)

    Article  Google Scholar 

  9. W. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  10. P. Wang, Y.X. Li, Y.Q. Lu, J. Eur. Ceram. Soc. 31, 2005–2012 (2011)

    Article  Google Scholar 

  11. J.G. Wu, D.Q. Xiao, W.J. Wu, J.G. Zhu, J. Wang, J. Alloy Compd. 509, L359–L361 (2011)

    Article  Google Scholar 

  12. S. Su, R.Z. Zuo, S.B. Lu, Z.K. Xu, X.H. Wang, L.T. Li, Curr. Appl. Phys. 11, S120–S123 (2011)

    Article  Google Scholar 

  13. T. Chen, T. Zhang, G.C. Wang, J.F. Zhou, J.W. Zhang, Y.H. Liu, J. Mater. Sci. 47, 4612–4619 (2012)

    Article  Google Scholar 

  14. Y.R. Cui, C.L. Yuan, X.Y. Liu, X.Y. Zhao, X. Shan, J. Mater. Sci. 24, 654–657 (2013)

    Google Scholar 

  15. Y.R. Cui, X.Y. Liu, M.H. Jiang, Y.B. Hu, Q.S. Su, H. Wang, J. Mater. Sci. 23, 1342–1345 (2012)

    Google Scholar 

  16. D.Z. Xue, Y.M. Zhou, H.X. Bao, J.H. Gao, X.B. Ren, Appl. Phys. Lett. 99, 122901 (2011)

    Article  Google Scholar 

  17. L.F. Zhu, B.P. Zhang, X.K. Zhao, L. Zhao, F.Z. Yao, X. Han, P.F. Zhou, J.F. Li, Appl. Phys. Lett. 103, 072905 (2013)

    Article  Google Scholar 

  18. C. Zhou, W.F. Liu, D.Z. Xue, X.B. Ren, H.X. Bao, J.H. Gao, L.X. Zhang, Appl. Phys. Lett. 100, 222910 (2012)

    Article  Google Scholar 

  19. X.P. Jiang, L. Li, C. Chen, J. Tang, K.P. Zheng, X.H. Li, J. Inorg. Mater. 29, 33–37 (2014)

    Article  Google Scholar 

  20. Y.G. Yao, C. Zhou, D.C. Lv, D. Wang, H.J. Wu, Y.D. Yang, X.B. Ren, Europhys. Lett. 98, 27008 (2012)

    Article  Google Scholar 

  21. S.T.F. Lee, K.H. Lam, X.M. Zhang, H.L.W. Chan, Ultrasonics 51, 811–814 (2011)

    Article  Google Scholar 

  22. N.Y. Chan, S.H. Choy, D.Y. Wang, Y. Wang, J.Y. Dai, H.L.W. Chan, J. Mater. Sci. 25, 2589–2594 (2014)

    Google Scholar 

  23. T.K.Y. Wong, B.J. Kennedy, C.J. Howard, B.A. Hunter, T. Vogt, J. Solid State Chem. 156, 255–263 (2001)

    Article  Google Scholar 

  24. Y. Tian, L.L. Wei, X.L. Chao, Z.H. Liu, Z.P. Yang, J. Am. Ceram. Soc. 96, 496–502 (2013)

    Google Scholar 

  25. P.F. Zhou, B.P. Zhang, L. Zhao, X.K. Zhao, L.F. Zhu, L.Q. Cheng, J.F. Li, Appl. Phys. Lett. 103, 172904 (2013)

    Article  Google Scholar 

  26. L. Jin, F. Li, S.J. Zhang, J. Am. Ceram. Soc. 97, 1–27 (2014)

    Article  Google Scholar 

  27. B.S. Li, Z.G. Zhu, G.R. Li, Q.R. Yin, A.L. Ding, Jpn. J. Appl. Phys. 43, 1458–1463 (2004)

    Article  Google Scholar 

  28. T.R. Thomas, S.J. Zhang, J. Electroceram. 19, 111–124 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Kui Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HR., Chen, CX. & Zheng, RK. Effects of Sr substitution on the structural, dielectric, ferroelectric, and piezoelectric properties of Ba(Zr,Ti)O3 lead-free ceramics. J Mater Sci: Mater Electron 26, 3057–3063 (2015). https://doi.org/10.1007/s10854-015-2797-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2797-6

Keywords

Navigation