Skip to main content
Log in

In situ synthesis of porous Fe3O4/C composite nanobelts with tunable magnetism, electrical conduction and highly efficient adsorption characteristics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Porous Fe3O4/C composite nanobelts have been successfully synthesized by carbonization of the electrospun polyacrylonitrile/polymethylmethacrylate/ferric acetylacetonate nanobelts. SEM observation reveals that the products are porous nanobelts in morphology. Electrical and magnetic properties analyses show that the porous Fe3O4/C composite nanobelts possess tunable electrical conductivity and magnetic performance. The N2 adsorption–desorption measurements demonstrate the surface area and the pore size of the porous Fe3O4/C composite nanobelts are enlarged with the increase of Fe3O4 contents. The obtained porous Fe3O4/C composite nanobelts exhibit efficient adsorption property for organic dyes in water and excellent magnetic separation performance. The isotherms and kinetics of adsorption process are determined and analyzed in detail, which are found to obey the Langmuir isotherm model and the pseudo-second-order kinetic model for Rhodamine B, respectively. The excellent adsorption capacity can be attributed to the porous structures, which will make them promising adsorbents for water treatment. This work provides a new insight into the design and development of functional carbon-based nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.S. Su, X.W. Chen, G. Weinberg, A. Klein-Hofmann, O. Timpe, S.B. Abd Hamid, R. Schlögl, Angew. Chem. Int. Ed. 44, 5488–5492 (2005)

    Article  Google Scholar 

  2. S. Shama, B.G. Pollet, J. Power Sources 208, 96–119 (2012)

    Article  Google Scholar 

  3. D.W. Li, L.J. Pan, Y.K. Wu, W. Peng, Carbon 50, 2571–2580 (2012)

    Article  Google Scholar 

  4. T.L. Kelly, T. Gao, M.J. Sailor, Adv. Mater. 23, 1776–1781 (2011)

    Article  Google Scholar 

  5. L. Zou, L. Gan, R. Lv, M.X. Wang, Z.H. Huang, F.Y. Kang, W.C. Shen, Carbon 49, 89–95 (2011)

    Article  Google Scholar 

  6. X.F. Lu, C. Wang, Y. Wei, Small 5, 2349–2370 (2009)

    Article  Google Scholar 

  7. D. Li, Y. Xia, Adv. Mater. 16, 1151–1170 (2004)

    Article  Google Scholar 

  8. W. Sambaer, M. Zatloukal, D. Kimmer, Chem. Eng. Sci. 66, 613–623 (2011)

    Article  Google Scholar 

  9. J.M. Corres, Y.R. Garcia, F.J. Arregui, I.R. Matias, IEEE Sens. J. 11, 2383–2387 (2011)

    Article  Google Scholar 

  10. S.A. Sell, P.S. Wolfe, J.J. Ericksen, D.G. Simpson, G.L. Bowlin, Tissue Eng. Part A 17, 2723–2737 (2011)

    Article  Google Scholar 

  11. J.G. Kim, D. Shi, M.S. Park, G. Jeong, Y.U. Heo, M. Seo, Y.J. Kim, J.H. Kim, S.X. Dou, Nano Res 6, 365–372 (2013)

    Article  Google Scholar 

  12. Z.Y. Hou, C.X. Li, P.A. Ma, G.G. Li, Z.Y. Cheng, C. Peng, D.M. Yang, P.P. Yang, J. Lin, Adv. Funct. Mater. 21, 2356–2365 (2011)

    Article  Google Scholar 

  13. Z.Y. Hou, C.X. Li, P.A. Ma, Z.Y. Cheng, X.J. Li, X. Zhang, Y.L. Dai, D.M. Yang, H.Z. Lian, J. Lin, Adv. Funct. Mater. 22, 2713–2722 (2012)

    Article  Google Scholar 

  14. M.Y. Zhang, C.L. Shao, X.H. Li, P. Zhang, Y.Y. Sun, C.Y. Su, X. Zhang, J.J. Ren, Y.C. Liu, Nanoscale 23, 7501–7508 (2012)

    Article  Google Scholar 

  15. J. Song, M.L. Chen, M.B. Olesen, C.X. Wang, R. Havelund, Q. Li, E.Q. Xie, R. Yang, P. Bøggild, C. Wang, F. Besenbacher, M.D. Dong, Nanoscale 3, 4966–4971 (2011)

    Article  Google Scholar 

  16. Lafdi K, Wright MA, Peters ST (London: Chapman and Hall, 1998), pp. 169–201

  17. S. Imaizumi, H. Matsumoto, K. Suzuki, M. Minagawa, M. Kimura, A. Tanioka, Polym. J. 41, 1124–1128 (2009)

    Article  Google Scholar 

  18. B.J. Kim, H. Kil, N. Watanabe, M.H. Seo, B.H. Kim, K.S. Yang, O. Kato, J. Miyawaki, I. Mochida, S.H. Yoon, Curr. Org. Chem. 17, 1463–1468 (2013)

    Article  Google Scholar 

  19. L. Wang, Y. Yu, P.C. Chen, D.W. Zhang, C.H. Chen, J. Power Sources 183, 717–723 (2008)

    Article  Google Scholar 

  20. T. Zhang, D.Q. Huang, Y. Yang, F.Y. Kang, J.L. Gu, Polymer 53, 6000–6007 (2012)

    Article  Google Scholar 

  21. J. Liu, Y.C. Zhou, F. Liu, C.P. Liu, J.B. Wang, Y. Pan, D.F. Xue, RSC Adv. 2, 2262–2265 (2012)

    Article  Google Scholar 

  22. M.S. Hassan, T. Amna, I.H. Hwang, M.S. Khil, Colloids Surf. B 106, 170–175 (2013)

    Article  Google Scholar 

  23. Y. Si, T. Ren, B. Ding, J.Y. Yu, G. Sun, J. Mater. Chem. 22, 4619–4622 (2012)

    Article  Google Scholar 

  24. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Mater. Chem. 22, 14438–14442 (2012)

    Article  Google Scholar 

  25. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, J. Nanopart. Res. 14, 1203–1209 (2012)

    Article  Google Scholar 

  26. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Nanopart. Res. 16, 2239–2248 (2014)

    Article  Google Scholar 

  27. L.M. Lang, Z. Xu, Appl. Mater. Interfaces 5, 1698–1703 (2013)

    Article  Google Scholar 

  28. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, J. Xu, Opt. Mater. 35, 526–530 (2013)

    Article  Google Scholar 

  29. Q.L. Ma, W.S. Yu, X.T. Dong, J.X. Wang, G.X. Liu, Nanoscale 6, 2945–2952 (2014)

    Article  Google Scholar 

  30. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, ChemPlusChem 79, 290–297 (2014)

    Article  Google Scholar 

  31. L. Liu, S.X. Liu, Q.P. Zhang, C. Li, C.L. Bao, X.T. Liu, P.F. Xiao, J. Chem. Eng. Data 58, 209–216 (2013)

    Article  Google Scholar 

  32. T.K. Sen, M.V. Sarzali, Chem. Eng. J. 142, 256–262 (2008)

    Article  Google Scholar 

  33. E. Alver, A.Ü. Metin, Chem. Eng. J. 200–202, 59–67 (2012)

    Article  Google Scholar 

  34. J.E. Panels, J. Lee, K.Y. Park, S.Y. Kang, M. Marquez, U. Wiesner, Y.L. Joo, Nanotechnology 19, 455612–455619 (2008)

    Article  Google Scholar 

  35. M. Bayat, H. Yang, F. Ko, Polymer 52, 1645–1653 (2011)

    Article  Google Scholar 

  36. Y.G. Wang, Y. Korai, I. Mochida, K. Nagayama, H. Hatano, N. Fukuda, Carbon 39, 1627–1634 (2001)

    Article  Google Scholar 

  37. G.Q. Gai, L.Y. Wang, X.T. Dong, C.M. Zheng, W.S. Yu, J.X. Wang, X.F. Xiao, J. Nanopart. Res. 15, 1539–1547 (2013)

    Article  Google Scholar 

  38. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, Chem. Eng. J. 222, 16–22 (2013)

    Article  Google Scholar 

  39. J. Xu, H.B. Yang, W.Y. Fu, Y.M. Sui, H.Y. Zhu, M.H. Li, G.T. Zou, Mater. Sci. Eng., B 132, 307–310 (2006)

    Article  Google Scholar 

  40. Y. Kaburagi, Y. Hishiyama, H. Oka, M. Inagaki, Carbon 39, 593–603 (2001)

    Article  Google Scholar 

  41. G.C. Li, L.L. Guan, Y.Q. Liu, C.G. Liu, J. Phys. Chem. Solids 73, 1055–1060 (2012)

    Article  Google Scholar 

  42. Y.X. Zhang, Y. Jia, Z. Jin, X.Y. Yu, W.H. Xu, T. Luo, B.J. Zhu, J.H. Liu, X.J. Huang, CrystEngComm 14, 3005–3007 (2012)

    Article  Google Scholar 

  43. L. Shi, Z.H. Leng, N. Guo, X.M. Wu, S.C. Gan, Colloids Surf. A: Physicochem. Eng. Asp. 446, 163–171 (2014)

    Article  Google Scholar 

  44. Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc. 130, 28–29 (2008)

    Article  Google Scholar 

  45. J. Lin, B. Ding, J. Yang, J. Yu, G. Sun, Nanoscale 4, 176–182 (2012)

    Article  Google Scholar 

  46. Ö. Gercel, A. Özcan, A.S. Özcan, H.F. Gercel, Appl. Surf. Sci. 253, 4843–4852 (2007)

    Article  Google Scholar 

  47. Y.H. Huang, C.L. Hsueh, C.P. Huang, L.C. Su, C.Y. Chen, Sep. Purif. Technol. 55, 23–29 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002, 20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402), the Science and Technology Research Project of the Education Department of Jilin Province during the eleventh 5-year plan period (Under Grant No. 2010JYT01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangting Dong or Jinxian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Ma, Q., Dong, X. et al. In situ synthesis of porous Fe3O4/C composite nanobelts with tunable magnetism, electrical conduction and highly efficient adsorption characteristics. J Mater Sci: Mater Electron 26, 2457–2465 (2015). https://doi.org/10.1007/s10854-015-2706-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2706-z

Keywords

Navigation