Skip to main content
Log in

Phase evolutions and electric properties of BaTiO3 ceramics by a low-temperature sintering process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BaTiO3 (BT) nanoparticles were synthesized by a modified polymeric precursor method in a weak acid solution. The synthesized process of BT precursor with increasing calcination temperature was investigated through thermal analysis (DTA/TG), X-ray diffraction, transmission electron microscope and Fourier-transform infrared spectroscopy. Good dispersive and homogeneous cubic BT nanoparticles were calcined at 800 °C, whereas dense BT ceramics were sintered at ~1,160 °C. The present results showed that the dielectric, piezoelectric and ferroelectric properties of BT ceramics were dependent on the ceramics densification and crystallographic structure. The excellent electric properties (P r = 10.5 μC/cm2, d 33 = 217 pC/N, k p = 0.32 %) were found at a sintering temperature of 1,160 °C, which was due to the coexistence of tetragonal and orthorhombic phase. The depressed electric properties at higher sintering temperature were associated to oxygen vacancies and impurity phases. In addition, phase evolutions of BT nanoparticles and ceramics were all stated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Wagata, R. Gallage, M. Yoshimura, N. Matsushita, Mater. Sci. Eng. B-Solid 146, 161 (2009)

    Google Scholar 

  2. S. Nayak, B. Sahoo, T.K. Chaki, D. Khastgir, RSC Adv. 1212, 4 (2014)

    Google Scholar 

  3. C.F. Kao, W.D. Yang, Ceram. Int. 57, 22 (1996)

    Google Scholar 

  4. C.L. Mao, X.L. Dong, T. Zeng, Mater. Lett. 1633, 61 (2007)

    Google Scholar 

  5. Y.C. Zhang, G.L. Wang, K.W. Li, M. Zhang, X.Y. Hu, H. Wang, J. Cryst. Growth. 513, 290 (2006)

    Google Scholar 

  6. A. Purwanto, W.N. Wang, I.W. Lenggoro, K. Okuyama, J. Eur. Ceram. Soc. 4489, 27 (2007)

    Google Scholar 

  7. E. Ciftci, M.N. Rahaman, M. Shumsky, J. Mater. Sci. 4875, 36 (2001)

    Google Scholar 

  8. D. Hennings, S. Schreinemacher, J. Eur. Ceram. Soc. 41, 9 (1992)

    Google Scholar 

  9. M. Veith, S. Mathur, N. Lecerf, V. Huch, T. Decker, H.P. Beck, W. Eiser, R. Haberkorn, J. Sol–Gel Sci. Technol. 145, 17 (2000)

    Google Scholar 

  10. B.A. Hernandez, K.S. Chang, E.R. Fisher, P.K. Dorhout, Chem. Mater. 480, 14 (2002)

    Google Scholar 

  11. C. Pithan, Y. Shiratori, R. Waser, J. Dornseiffer, F.H. Haegel, J. Am. Ceram. Soc. 2908, 89 (2006)

    Google Scholar 

  12. D. Gingasu, I. Mindru, L. Patron, G. Marinescu, S. Preda, J.M. Calderon-Moreno, N. Stanica, C. Andronescu, Ceram. Int. 2267, 40 (2014)

    Google Scholar 

  13. Y.B. Khollam, S.V. Bhoraskar, S.B. Deshpande, H.S. Potdar, N.R. Pavaskar, S.R. Sainkar, S.K. Date, Mater. Lett. 1871, 57 (2003)

    Google Scholar 

  14. A. Ianculescu, D. Berger, M. Viviani, C.E. Ciomaga, L. Mitoseriu, E. Vasile, N. Drăgan, D. Crişan, J. Eur. Ceram. Soc. 3655, 27 (2007)

    Google Scholar 

  15. D. Hennings, W. Mayr, J. Solid State Chem. 329, 26 (1978)

    Google Scholar 

  16. L.A. Pérez-Maqueda, M.J. Diánez, F.J. Gotor, M.J. Sayagués, C. Real, J.M. Criado, J. Mater. Chem. 2234, 13 (2003)

    Google Scholar 

  17. R. Ashiri, A. Nemati, M.S. Ghamsari, S. Sanjabi, M. Aalipour, Mater. Res. Bull. 2291, 46 (2011)

    Google Scholar 

  18. Z.M. Wang, K. Zhao, X.L. Guo, W. Sun, H.L. Jiang, X.Q. Han, X.T. Tao, Z.X. Cheng, H.Y. Zhao, H. Kimura, J. Mater. Chem. C 522, 1 (2013)

    Google Scholar 

  19. M.L. Li, H. Liang, M.X. Xu, Mater. Chem. Phys. 337, 112 (2008)

    Google Scholar 

  20. Y. Zhang, S.T. Luo, Y. Fu, K.L. Zhang, J. Mater. Sci. 3179, 41 (2006)

    Google Scholar 

  21. H.W. Wang, Mater. Chem. Phys. 1, 74 (2002)

    Google Scholar 

  22. M. Özen, M. Mertens, J. Luyten, F. Snijkers, H. D’Hondt, P. Cool, Ceram. Int. 619, 38 (2012)

    Google Scholar 

  23. Y. Terashi, A. Purwanto, W.N. Wang, F. Iskandar, K. Okuyama, J. Eur. Ceram. Soc. 2573, 28 (2008)

    Google Scholar 

  24. B.D. Begg, E.R. Vance, J. Nowotny, J. Am. Ceram. Soc. 3186, 77 (1994)

    Google Scholar 

  25. G.J. Choi, H.S. Kim, Y.S. Cho, Mater. Lett. 122, 41 (1999)

    Google Scholar 

  26. C.L. Mao, X.L. Dong, T. Zeng, G.S. Wang, S. Chen, Mater. Res. Bull. 1602, 42 (2007)

    Google Scholar 

  27. S. Kumar, G.L. Messing, W.B. White, J. Am. Ceram. Soc. 617, 76 (1993)

    Google Scholar 

  28. W.A. Sun, C.H. Li, J.Q. Li, W.N. Liu, Mater. Chem. Phys. 481, 97 (2006)

    Google Scholar 

  29. W. Lu, M. Quilitz, H. Schmidt, J. Eur. Ceram. Soc. 3149, 27 (2007)

    Google Scholar 

  30. V.A. Vasiljev, K.A. Vorotilov, M.I. Yanovskaya, L.I. Solovjeva, A.S. Sigov, J. Sol–Gel Sci. Technol. 877, 13 (1998)

    Google Scholar 

  31. E.R. Leite, C.M.G. Sousa, E. Longo, J.A. Varela, Ceram. Int. 143, 21 (1995)

    Google Scholar 

  32. M. Wang, R.Z. Zuo, S.S. Qi, L.D. Liu, J. Mater. Sci. Mater. El. 753, 23 (2012)

    Google Scholar 

  33. Y.T. Wu, X.F. Wang, C.L. Yu, E.Y. Li, Mater. Manuf. Process 1329, 27 (2012)

    Google Scholar 

  34. T. Hayashi, H. Shinozaki, K. Sasaki, J. Eur. Ceram. Soc. 1011, 19 (1999)

    Google Scholar 

  35. W.L. Luan, L. Gao, Ceram. Int. 645, 27 (2001)

    Google Scholar 

  36. A. Habib, R. Haubner, N. Stelzer, Mater. Sci. Eng. B-Solid 60, 152 (2008)

    Google Scholar 

  37. R.Z. Liu, Y.J. Zhao, H.P. Zhou, Adv. Powder Technol. 780, 24 (2014)

    Google Scholar 

  38. T.K. Mandal, Mater. Lett. 850, 61 (2007)

    Google Scholar 

  39. S.W. Zhang, H.L. Zhang, B.P. Zhang, G.L. Zhao, J. Eur. Ceram. Soc. 3235, 29 (2009)

    Google Scholar 

  40. N. Ma, B.P. Zhang, W.G. Yang, D. Guo, J. Eur. Ceram. Soc. 1059, 32 (2012)

    Google Scholar 

  41. X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Solid State Commun. 163, 131 (2004)

    Google Scholar 

  42. N. Lei, M.K. Zhu, P. Yang, L.L. Wang, L.F. Wang, Y.D. Hou, J. Appl. Phys. 054102, 109 (2001)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Fundamental Research Founds for National University, China University of Geosciences (Wuhan) (CUG120118), and State Key Laboratory of Advanced Technology for Materials Synthesis Processing (Wuhan University of Technology, 2012-KF-3) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yansheng Gong or Dawei Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Gong, Y., Zhang, Z. et al. Phase evolutions and electric properties of BaTiO3 ceramics by a low-temperature sintering process. J Mater Sci: Mater Electron 25, 5467–5474 (2014). https://doi.org/10.1007/s10854-014-2330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2330-3

Keywords

Navigation