Skip to main content
Log in

Single Gaussian distribution of barrier height in Al/PS–ZnPc/p-Si type Schottky barrier diode in temperature range of 120–320 K

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Possible current-transport mechanism in aluminum/polystrene–zincphthalocyanine/ptype silicon Schotky barrier diode (Al/PS–ZnPc/p-Si; SBD), for the forward bias current–voltage (I–V) characteristics were carried out in the temperature range of 120–320 K. The high value of ideality factor (n), especially at low temperatures, was attributed to the existence of PS layer, barrier in-homogeneities and particular density distribution of surface states between metal and semiconductor. An abnormal decrease in the zero-bias barrier height (BH) and increase in n with decreasing temperature which leads to non-linearity in the Richardson plot, have been observed. Linear relationship between BH and n was also observed. BH was plotted as a function of q/2kT to obtain evidence of Gaussian distribution (GD) of the BHs. The mean BH and its standard deviation (σ) were obtained as 1.03 eV and 0.117 V from the slope and intercept of this plot, respectively. Thus, the modified ln(Io/T2) − q2σo2/2k2T2 versus q/kT plot gives mean BH and the modified Richardson constant \({\text{A}}_{\bmod }^{*}\) as 1.043 eV and 29.824 A cm−2 K−2, respectively. This value of the Richardson constant is very close to the theoretical value of 32 A cm−2 K−2 for p-type Si. Therefore, non-ideal behavior of forward-bias I–V characteristics in Al/PS–ZnPc/p-Si might be successfully explained in terms of the thermionic emission mechanism with single GD of BHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981), pp. 245–307

    Google Scholar 

  2. F.E. Cimilli, H. Efeoğlu, M. Sağlam, A. Türüt, J. Mater. Sci. Mater. Electron. 20, 105 (2009)

    Article  Google Scholar 

  3. R.F. Schmitsdorf, T.U. Kampen, W. Mönch, Surf. Sci. 324, 249 (1995)

    Article  Google Scholar 

  4. T.U. Kampen, S. Park, D.R.T. Zahn, Appl. Surf. Sci. 190, 461 (2002)

    Article  Google Scholar 

  5. S. Chand, J. Kumar, Semicond. Sci. Technol. 11, 1203 (1996)

    Article  Google Scholar 

  6. M.K. Hudait, P. Venkateswarlu, S.B. Krupanidhi, Solid State Electron. 45, 133 (2001)

    Article  Google Scholar 

  7. R. Hackam, P. Harrop, IEEE Trans. Electron Dev. 19, 1231 (1972)

    Article  Google Scholar 

  8. Z.J. Horvath, J. Appl. Phys. 64, 6780 (1988)

    Article  Google Scholar 

  9. Z.J. Horvarth, Solid State Electron. 39, 176 (1996)

    Article  Google Scholar 

  10. A.A. Kumar, V. Janardhanam, V.R. Reddy, J. Mater. Sci. Mater. Electron. 22, 854 (2011)

    Article  Google Scholar 

  11. M.K. Hudait, S.B. Krupanidhi, Phys. B 307, 125 (2001)

    Article  Google Scholar 

  12. A. Turut, Turk J. Phys. 36, 235 (2012)

    Google Scholar 

  13. Ö. Güllü, M. Biber, R.L. Van Meirhaeghe, A. Türüt, Thin Solid Films 616, 7851 (2008)

    Article  Google Scholar 

  14. R. Tung, Appl. Phys. Lett. 58, 2821 (1991)

    Article  Google Scholar 

  15. J. Werner, H. Guttler, J. Appl. Phys. 69, 1522 (1991)

    Article  Google Scholar 

  16. Ö. Vural, Y. Safak, S. Altındal, A. Türüt, Curr. Appl. Phys. 10, 761 (2010)

    Article  Google Scholar 

  17. U. Aydemir, İ. Taşçıoğlu, Ş. Altındal, İ. Uslu, Mater. Sci. Semicond. Proc. 16, 1685 (2013)

    Article  Google Scholar 

  18. A. Kaya, S. Zeyrek, S.E. San, Ş. Altindal, Chin. Phys. B 23, 018506 (2014)

    Article  Google Scholar 

  19. S. Asubay, Microelectron. Eng. 88, 109 (2011)

    Article  Google Scholar 

  20. V. Janardhanam, I. Jyothi, K.-S. Ahn, C.-J. Choi, Thin Solid Films 546, 63 (2013)

    Article  Google Scholar 

  21. V. Janardhanam, A.A. Kumar, V. Rajagopal Reddy, P. Narasimha Reddy, J. Alloy Compd. 485, 467 (2009)

    Article  Google Scholar 

  22. I. Dökme, Ş. Altindal, M.M. Bülbül, Appl. Surf. Sci. 252, 7749 (2006)

    Article  Google Scholar 

  23. H.S. Soliman, A.A.M. Farag, N.M. Khosifan, M.M. El-Nahass, Thin Solid Films 516, 8678 (2008)

    Article  Google Scholar 

  24. A. Hussain, P. Akhter, A.S. Bhatti, A.A. Shah, S. Bilal, Vacuum 84, 975 (2010)

    Article  Google Scholar 

  25. M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, N.A. El-Ghamaz, Solid State Electron. 49, 1314 (2005)

    Article  Google Scholar 

  26. A.A. Kumar, S. Vinayak, R. Singh, Curr. Appl. Phys. 13, 1137 (2013)

    Article  Google Scholar 

  27. S. Demirezen, S. Altındal, Curr. Appl. Phys. 10, 1188 (2010)

    Article  Google Scholar 

  28. H.C. Card, E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971)

    Article  Google Scholar 

  29. Ş. Altındal, I. Dökme, M.M. Bülbül, N. Yalçın, T. Serin, Microelectron. Eng. 83, 499 (2006)

    Article  Google Scholar 

  30. Ş. Karataş, Ş. Altındal, A. Türüt, M. Çakar, Phys. B 392, 43 (2007)

    Article  Google Scholar 

  31. D. Korucu, A. Turut, H. Efeoğlu, Phys. B 414, 35 (2013)

    Article  Google Scholar 

  32. C.R. Crowell, V.L. Rideout, Solid State Electron. 12, 89 (1969)

    Article  Google Scholar 

  33. R.F. Schmitsdorf, T.U. Kampen, W. Mönch, J. Vac. Sci. Technol. B 15, 1221 (1997)

    Article  Google Scholar 

  34. Ö. Güllü, M. Biber, Ö. Barış, A. Türüt, Appl. Surf. Sci. 254, 3039 (2008)

    Article  Google Scholar 

  35. S. Ashok, J.M. Borreg, R.J. Gutmann, Solid State Electron. 22, 621 (1979)

    Article  Google Scholar 

  36. Ş. Altındal, H. Kanbur, D.E. Yıldız, M. Parlak, Appl. Surf. Sci. 253, 5056 (2007)

    Article  Google Scholar 

  37. Ö. Güllü, M. Biber, A. Türüt, J. Mater. Sci. Mater. Electron. 19, 986 (2008)

    Article  Google Scholar 

  38. H. Kanbur, Ş. Altındal, A. Tataroğlu, Appl. Surf. Sci. 252, 1732 (2005)

    Article  Google Scholar 

  39. M. Mamor, K. Bouziane, A. Tirbiyine, J. Mater. Sci. Mater. Electron. 25, 1527 (2014)

    Article  Google Scholar 

  40. M. Önder, Ş. Aydoğan, K. Meral, J. Alloy. Compd. 585, 681 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Authors want to express their great acknowledges to the scientific research unit of Amasya University for the financial support to this study with Grant Numbers of FMB-BAP-13-038 and FMB-BAP-13-059, and executives of Amasya University Central Research Laboratory for their kind understanding of using their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özkan Vural.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarıyıldız, A., Vural, Ö., Evecen, M. et al. Single Gaussian distribution of barrier height in Al/PS–ZnPc/p-Si type Schottky barrier diode in temperature range of 120–320 K. J Mater Sci: Mater Electron 25, 4391–4397 (2014). https://doi.org/10.1007/s10854-014-2178-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2178-6

Keywords

Navigation