Skip to main content
Log in

Effect of zinc oxide concentration in fluorescent ZnS:Mn/ZnO core–shell nanostructures

Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, we have prepared zinc sulphide (ZnS:Mn)/zinc oxide (ZnO) core–shell nanostructures by a chemical precipitation method and observed the effect of ZnO concentration on the fluorescent nanoparticles. Change in the morphological and optical properties of core–shell nanoparticles have been observed by changing the concentration of ZnO in a core–shell combination with optimum value of Mn to be 1 % in ZnS. The morphological studies have been carried out using X-ray diffraction (XRD) and transmission electron microscopy. It was found that diameter of ZnS:Mn nanoparticles was around 4–7 nm, each containing primary crystallites of size 2.4 nm which was estimated from the XRD patterns. The particle size increases with the increase in ZnO concentration leading to the well-known ZnO wurtzite phase which was coated on the FCC phase of ZnS:Mn. Band gap studies were performed by UV–visible spectroscopy and a red shift in absorption spectra have been observed with the addition of Mn as well as with the capping of ZnO on ZnS:Mn. The formation of core–shell nanostructures have been also confirmed by FTIR analysis. Photoluminescence studies show that emission wavelength is red shifted with the addition of ZnO layer on ZnS:Mn(1 %). These core–shell ZnS:Mn/ZnO nano-composites will be a very suitable material for specific kind of tunable optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. J. Lee, V.C. Sundar, J.R. Heine, M.G. Bawendi, K.F. Jensen, Adv. Mater. Commun. 12(5), 1102 (2000)

    Google Scholar 

  2. W.J. Parak, D. Gerion, D. Zanchet, A.S. Woerz, T. Pellegrino, C.M. Micheel, S.C. Williams, M. Seitz, R.E. Bruehl, Z. Bryant, C. Bustamante, C.R. Bertozzi, A.P. Alivisatos, Chem. Mater. 14(5), 2113 (2002)

    Article  Google Scholar 

  3. M. Han, X. Gao, J.Z. Su, S. Nie, Nat. Biotechnol. 19, 631 (2001)

    Article  Google Scholar 

  4. W.U. Huynh, J.J. Dittmer, W.C. Libby, G.L. Whiting, A.P. Alivisatos, Adv. Funct. Mater. 13(1), 73 (2003)

    Article  Google Scholar 

  5. Z.W. Quan, D.M. Yang, C.X. Li, D.Y. Kong, P.P. Yang, Z.Y. Cheng, J. Lin, Langmuir 25, 10259 (2009)

    Article  Google Scholar 

  6. Q.J. Sun, Y.A. Wang, L.S. Li, D.Y. Wang, T. Zhu, J. Xu, C.H. Yang, Y.F. Li, Nat. Photonics 1, 717 (2007)

    Article  Google Scholar 

  7. Y. Yang, Y.Q. Li, S.Y. Fu, H.M. Xiao, J. Phys. Chem. C 112, 10553 (2008)

    Article  Google Scholar 

  8. J. Yan, X. Fang, L. Zhang, Y. Bando, U.K. Gautam, B. Dierre, T. Sekiguchi, D. Golberg, Nano Lett. 8, 2794 (2008)

    Article  Google Scholar 

  9. X. Fan, M.L. Zhang, I. Shafiq, W.J. Zhang, C.S. Lee, S.T. Lee, Adv. Mater. 21, 2393 (2009)

    Article  Google Scholar 

  10. L. Yu, X.F. Yu, Y. Qiu, Y. Chen, S. Yang, Chem. Phys. Lett. 465, 272 (2008)

    Article  Google Scholar 

  11. K.M. Sulieman, X. Huang, J. Liu, M. Tang, Smart Mater. Struct. 16, 89 (2007)

    Article  Google Scholar 

  12. A. Jain, S. Panwar, S. Kumar, J. Mater. Sci.: Mater. Electron. 24, 5147 (2013)

    Google Scholar 

  13. V. Wood, J.E. Halpert, M.J. Panzer, M.G. Bawendi, V. Bulovic, Nano Lett. 9, 2367 (2009)

    Article  Google Scholar 

  14. Y. Fang, S. Chu, H. Chen, P. Kao, I. Chen, C. Hwang, J. Electrochem. Soc. 156, K55 (2009)

    Article  Google Scholar 

  15. T.P. Surkova, V.R. Galakhov, E.Z. Kurmaev, Low Temp. Phys. 35, 79 (2009)

    Article  Google Scholar 

  16. R.N. Bhargava, D. Gallagher, Phys. Rev. Lett. 72, 416 (1994)

    Article  Google Scholar 

  17. M.M. Rashad, D.A. Rayan, K. El-Barawy, J. Phys: Conf. Ser. 200, 072077 (2010)

    Google Scholar 

  18. J. Yang, L. Fan, J. Cao, D. Han, M. Wei, L. Yang, B. Feng, B. Wang, H. Fu, S. Ge, J. Mater. Sci.: Mater. Electron. 24, 1955 (2013)

    Google Scholar 

  19. R. Sahraei, A. Daneshfar, A. Goudarzi, S. Abbasi, M.H. Majles Ara, J. Rahimi, J. Mater. Sci.: Mater. Electron. 24, 260 (2013)

    Google Scholar 

  20. H.F. Wang, Y. He, T.R. Ji, X.P. Yan, Anal. Chem. 81, 1615 (2009)

    Article  Google Scholar 

  21. H.F. Wang, Y. Li, Y.Y. Wu, Y. He, X.P. Yan, Chem. Eur. J. 16, 12988 (2010)

    Article  Google Scholar 

  22. P. Wu, Y. He, H.F. Wang, X.P. Yan, Anal. Chem. 82, 1427 (2010)

    Article  Google Scholar 

  23. W. Tang, D.C. Cameron, Thin Solid Films 280, 221 (1996)

    Article  Google Scholar 

  24. N. Karar, F. Singh, B.R. Mehta, J. Appl. Phys. 95, 656 (2004)

    Article  Google Scholar 

  25. Y. Ding, X.D. Wang, Z.L. Wang, Chem. Phys. Lett. 398, 32 (2004)

    Article  Google Scholar 

  26. A.B. Cruz, Q. Shen, T. Toyoda, Mater. Sci. Eng., C 25, 761 (2005)

    Article  Google Scholar 

  27. J. Mu, D.Y. Gu, Z.Z. Xu, Mater. Res. Bull. 40, 2198 (2005)

    Article  Google Scholar 

  28. N. Karar, H. Chander, S.M. Shivaprasad, Appl. Phys. Lett. 85, 5058 (2004)

    Article  Google Scholar 

  29. D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, B. Dong, Nanoscale Res. Lett. 4, 78 (2009)

    Article  Google Scholar 

  30. A.A. Ashkarran, Mater. Sci. Semicond. Process. 17, 1 (2014)

    Article  Google Scholar 

  31. S. Sen, C.S. Solanki, P. Sharma, J. Lumin. 145, 669 (2014)

    Article  Google Scholar 

  32. H.C. Warad, S.C. Ghosh, B. Hemtanon, C. Thanachayanont, J. Dutta, Sci. Tech. Adv. Mat. 6, 296 (2005)

    Article  Google Scholar 

  33. A.K. Thottoli, A.K.A. Unni, J. Nanostruct. Chem. 3, 56 (2013)

    Article  Google Scholar 

  34. B.S. RemadeviI, R. Raveendran, A.V. Vaidyan, Pramana J. Phys. 68(4), 679 (2007)

    Article  Google Scholar 

  35. I. Ahemen, O. Meludu, E. Odoh, Br. J. App. Sci. Technol. 3(4), 1228 (2013)

    Google Scholar 

  36. J. Alaria, P. Turek, M. Bernard, M. Bouloudenine, A. Berbadj, N. Brihi, G. Schmerber, S. Colis, A. Dinia, J. Magn. Mater. 286, 297 (2005)

    Article  Google Scholar 

  37. J.H. Jeong, H. Kyoung, J. Phys. Chem. 79, 075413 (2009)

    Google Scholar 

  38. B. Staurt, Infrared Spectroscopy: Fundamentals and Applications (Wiley, New York, 2004)

    Book  Google Scholar 

  39. R. Viswanatha, T.G. Venkatesh, C.C. Vidyasagar, Y.A. Nayaka, Arch. Appl. Sci. Res. 4(1), 480 (2012)

    Google Scholar 

  40. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  Google Scholar 

  41. M. Sharma, S. Kumar, O.P. Pandey, J. Nanopart. Res. 12, 2655 (2010)

    Article  Google Scholar 

  42. B. Xia, I.W. Lenggoro, K. Okuyama, Chem. Mater. 14, 4969 (2002)

    Article  Google Scholar 

  43. H. Hu, W.H. Zhang, Opt. Mater. 28, 536 (2006)

    Article  Google Scholar 

  44. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Pandey, Opto-Electron. Rev. 18, 467 (2010)

    Article  Google Scholar 

  45. W.Q. Peng, S.C. Qu, G.W. Cong, Z.G. Wang, Mater. Sci. Semicond. Process. 9, 156 (2006)

    Article  Google Scholar 

  46. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  Google Scholar 

  47. U. Pal, P. Santiago, J. Phys. Chem. B 109, 15317 (2005)

    Article  Google Scholar 

  48. R.M. Nyffenegger, B. Craft, M. Shaaban, S. Gorer, G. Erley, R.M. Penner, Chem. Mater. 10, 1120 (1998)

    Article  Google Scholar 

  49. M. Liu, A.H. Kitai, P. Mascher, J. Lumin. 54, 35 (1992)

    Article  Google Scholar 

  50. T.K. Kundu, N. Karak, P. Barik, S. Saha, IJSCE 1, 19 (2011)

    Google Scholar 

  51. P. Schroer, P. Kriiger, J. Pollmann, Phys. Rev. B 47, 6971 (1993)

    Article  Google Scholar 

  52. R.B. Kale, Y.J. Hsu, Y.F. Lin, S.Y. Lu, Solid State Commun. 142, 302 (2007)

    Article  Google Scholar 

  53. H. S. Bhatti, S. Kumar, K. Singh, Kavita, J. Mater. Sci. 48(16), 5536 (2013)

Download references

Acknowledgments

This research was supported by Leading Foreign Research Institute Recruitment Program through the National Research of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (No. 2013-044975). One of the author R. K. Choubey is thankful to Department of Science and Technology, Science and Engineering Research Board, New Delhi for the financial support (Grant No. SR/FTP/PS-038/2012). One of the author is also thankful to the Department of Science (DST), New Delhi, India for supporting the part of this research work (vide Project No. SR/FTP/PS-69/2008), dated 15/1/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, A., Panwar, S., Kang, T.W. et al. Effect of zinc oxide concentration in fluorescent ZnS:Mn/ZnO core–shell nanostructures. J Mater Sci: Mater Electron 25, 1716–1723 (2014). https://doi.org/10.1007/s10854-014-1788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-1788-3

Keywords

Navigation