Skip to main content
Log in

Nanocrystalline scheelite SrWO4: a low temperature co-fired ceramic optical material-synthesis and properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline strontium tungstate (SrWO4) is synthesized through a single step modified combustion process. The X-ray diffraction, Fourier transform Raman and Infrared spectroscopy studies reveal that the as-prepared powder is single phase and possess tetragonal structure. The transmission electron microscopic investigations have shown that the particle size of the as prepared powder is in the range 18–22 nm. The optical constants are estimated from the UV–Visible studies and calculated optical band gap is 4.28 eV. The sample showed maximum transmission in the visible regions but poor transmittance in the ultraviolet region. The photoluminescence spectra recorded at different temperatures showed intense blue emission. The nanocrystalline SrWO4 obtained by the present combustion method was sintered to 95 % density at a relatively lower temperature of 810 °C for 3 h. The dielectric constant (εr) and loss factor (tan δ) of the sintered SrWO4 pellets at 5 MHz measured at room temperature were 9.9 and 6.29 × 10−3 respectively. The experimental results obtained in this work demonstrate the application of SrWO4 as UV filters, transparent films for window layers on solar cells, anti-reflection coatings, scintillators, detectors and for low-temperature co-fired ceramic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L.D. Feng, X.B. Chen, C.J. Mao, Mater. Lett. 64, 2420 (2010)

    Article  Google Scholar 

  2. C.H. Cui, J. Bi, D.J. Gao, J. Cryst. Growth 310, 4385 (2008)

    Article  Google Scholar 

  3. W.S. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata, M. Yoshimura, Appl. Phys. Lett. 68, 137 (1996)

    Article  Google Scholar 

  4. S.H. Yu, B. Liu, M.S. Mo, J.H. Huang, X.M. Liu, Y.T. Qian, Adv. Funct. Mater. 13, 639 (2003)

    Article  Google Scholar 

  5. M. Anicete-Santos, F.C. Picon, M.T. Escote, E.R. Leite, Appl. Phys. Lett. 88, 211913 (2006)

    Article  Google Scholar 

  6. L. Sun, Q. Guo, X. Wu, S. Luo, W. Pan, K. Huang, J. Lu, L. Ren, M. Cao, C. Hu, J. Phys. Chem. C 111, 532 (2007)

    Article  Google Scholar 

  7. P. Rodríguez-Hernández et al., J. Phys. Chem. Solids 67, 2164 (2006)

    Article  Google Scholar 

  8. P. Lecoq, I. Dafinei, E. Auffray, M. Scheegans, M.V. Korzhik, O.V. Missetvich, V.B. Pavlenko, A.A. Fedorov, A.N. Annenkov, V.L. Kostylev, V.D. Ligun, Nucl. Instrum. Methods Phys. Res. A 365, 291 (1995)

    Article  Google Scholar 

  9. N. Faure, C. Borel, M. Couchaud, G. Basset, R. Templier, C. Wyon, Appl. Phys. B 63, 593 (1996)

    Google Scholar 

  10. M. Nikl, P. Bohacek, N. Mihokova, M. Kobayashi, M. Ishii, Y. Usuki et al., J. Lumin. 87–89, 1136 (2000)

    Article  Google Scholar 

  11. D. Errandonea, F.J. Manjón, Prog. Mater. Sci. 53, 711 (2008)

    Article  Google Scholar 

  12. L.I. Ivleva, T.T. Basiev, I.S. Voronina, P.G. Zverev, V.V. Osiko, N.M. Polozkov, Opt. Mater. 23, 439 (2003)

    Article  Google Scholar 

  13. D. Errandonea, C. Tu, G. Jia, I.R. Martin, U.R. Rodrguez-Mendoza, F. Lahoz, M.E. Torres, V. Lavn, J. Alloy. Compd. 451, 212 (2008)

    Article  Google Scholar 

  14. J. Sulc, H. Jelnkova, T.T. Basiev, M.E. Doroschenko, L.I. Ivleva, V.V. Osiko, P.G. Zverev, Opt. Mater. 30, 195 (2007)

    Article  Google Scholar 

  15. A. Achim, L. Gheorghe, V. Lupei, A. Lupei, C. Gheorghe, C. Stoicescu, J. Optoelectron. Adv. Mater. 10, 1353 (2008)

    Google Scholar 

  16. Y.X. Fan, Y. Liu, Y.H. Duan, Q. Wang, L. Fan, H.T. Wang, G.H. Jia, C.Y. Tu, Appl. Phys. B 93, 327 (2008)

    Article  Google Scholar 

  17. F.G. Yang, Z.Y. You, Z.J. Zhu, Y. Wang, J.F. Li, C.Y. Tu, Laser Phys. Lett. 7, 14 (2010)

    Article  Google Scholar 

  18. Y. Duan, F. Yang, H. Zhu, Z. Zhu, C. Huang, Z. You, Y. Wei, G. Zhang, C. Tu, Opt. Commun. 283, 5135 (2010)

    Article  Google Scholar 

  19. Z. Cong, X. Zhang, Q. Wang, Z. Liu, S. Li, X. Chen, X. Zhang, S. Fan, H. Zhang, X. Tao, Opt. Lett. 34, 2610 (2009)

    Article  Google Scholar 

  20. S. Nishigaki, S. Yano, H. Kato, T. Nonomura, J. Am. Ceram. Soc. 71, C-11 (1988)

    Article  Google Scholar 

  21. W.S. Cho, M. Yoshimura, Jpn. J. Appl. Phys. 36, 1216 (1997)

    Article  Google Scholar 

  22. Y. Liu, Y. Chu, Mater. Chem. Phys. 92, 59 (2005)

    Article  Google Scholar 

  23. F. Zhang, S.-P. Yang, H.-M. Chen, Z.-H. Wang, X.-B. Yu, J. Cryst. Growth 267, 569 (2004)

    Article  Google Scholar 

  24. Y. Kashiwakura, O. Kanehisa, Japan Patent No. 1-263188 (1989)

  25. P.F.S. Pereira, A.P. de Moura, I.C. Nogueira, M.V.S. Lima, E. Longo, P.C. de Sousa Filho, O.A. Serra, E.J. Nassar, I.L.V. Rosa, J. Alloy. Compd. 526, 11 (2012)

    Article  Google Scholar 

  26. J.D. Fan, H.J. Zhang, J.Y. Wang, M.H. Jiang, R.I. Boughton, D.G. Ran, S.Q. Sun, H.R. Xia, J. Appl. Phys. 100, 0635131 (2006)

    Google Scholar 

  27. E. Orhan, M. Anicete-Santos, M.A.M.A. Maurera, F.M. Pontes, C.O. Paiva-Santos, A.G. Souza, J.A. Varela, P.S. Pizani, E. Longo, Chem. Phys. 312, 1 (2005)

    Article  Google Scholar 

  28. J.Y. Huang, Q.X. Jia, Thin Solid Films 444, 95 (2003)

    Article  Google Scholar 

  29. C. Cui, J. Bi, D. Gao, J. Crys. Grow. 310, 4385 (2008)

    Article  Google Scholar 

  30. Z. Lou, M. Cocivera, Mater. Res. Bull. 37, 1573 (2002)

    Article  Google Scholar 

  31. X. Jianga, J. Ma, Y. Yao, Y. Sun, Z. Liu, Y. Ren, J. Liu, B. Lin, Ceram. Int. 35, 3525 (2009)

    Article  Google Scholar 

  32. T. Thongtem, A. Phuruangrat, S. Thongtem, J. Nanopart. Res. 12, 2287 (2010)

    Article  Google Scholar 

  33. M. Anicete-Santos, F.C. Picon, M.T. Escote, E.R. Leite, P.S. Pizani, J.A. Varela, E. Longo, Appl. Phys. Lett. 88, 2119131 (2006)

    Article  Google Scholar 

  34. Z.C. Ling, H.R. Xia, D.G. Ran, F.Q. Liu, S.Q. Sun, J.D. Fan, H.J. Zhang, J.Y. Wang, L.L. Yu, Chem. Phys. Lett. 426, 85 (2006)

    Article  Google Scholar 

  35. A.P.A. Marques, F.C. Picon, D.M.A. Melo, P.S. Pizani, E.R. Leite, J.A. Varela, E. Longo, J. Fluoresc. 18, 51 (2008)

    Article  Google Scholar 

  36. I.L.V. Rosa, A.P.A. Marques, M.T.S. Tanaka, D.M.A. Melo, E.R. Leite, E. Longo, J.A. Varela, J. Fluoresc. 18, 239 (2008)

    Article  Google Scholar 

  37. X. Zhao, T.L.Y. Cheung, X. Zhang, D.H.L. Ng, J. Yu, J. Am. Ceram. Soc. 89, 2960 (2006)

    Google Scholar 

  38. E.-K. Ryu, Y.-D. Huh, Mater. Lett. 62, 3081 (2008)

    Article  Google Scholar 

  39. J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.W.M. Espinosa, P.S. Pizani, J.A. Varela, E. Longo, J. Colloid Interface Sci. 330, 227 (2009)

    Article  Google Scholar 

  40. D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144 (1972)

    Article  Google Scholar 

  41. W.F. Zhang, Z. Yin, M.S. Zhang, Appl. Phys. A 70, 93 (2000)

    Article  Google Scholar 

  42. H.W. Eng, P.W. Barnes, B.M. Auer, P.M. Woodward, J. Solid State Chem. 175, 94 (2003)

    Article  Google Scholar 

  43. L.S. Cavalcante, J.C. Sczancoski, R.L. Tranquilin, M.R. Joya, P.S. Pizani, J.A. Varela, E. Longo, J. Phys. Chem. Solid. 69, 2674 (2008)

    Article  Google Scholar 

  44. E. Marquez, A.M. Bernal Oliva, J.M. Gonzalez Leal, R. Prieto Alcon, A. Ledesma, R. Jimenez Garay, I. Martil, Mater. Chem. Phys. 60, 231 (1999)

    Article  Google Scholar 

  45. F. Tepehan, N. Ozer, Sol. Energy Mater. Sol. Cells 30, 353 (1993)

    Article  Google Scholar 

  46. S. Vidya, S. Solomon, J.K. Thomas, J. Electron. Mater. 42, 129 (2013)

    Article  Google Scholar 

  47. T. Thongtem, A. Phuruangrat, S. Thongtem, Curr. Appl. Phys. 8, 189 (2008)

    Article  Google Scholar 

  48. T. Thongtem, S. Kaowphong, S. Thongtem, Appl. Surf. Sci. 254, 7765 (2008)

    Article  Google Scholar 

  49. G. Blasse, B.C. Grabmaier, Luminescent materials (Springer, Berlin, 1994)

    Book  Google Scholar 

  50. J.G. Yu, X.F. Zhan, S.W. Liu, M. Li, S. Mann, D.H.L. Ng, Appl. Phys. A 87, 113 (2007)

    Article  Google Scholar 

  51. M.A. Santos, F.C. Picon, C.N. Alves, P.S. Pizani, J.A. Varela, E. Longo, J. Phys. Chem. C 115, 12180 (2011)

    Article  Google Scholar 

  52. M.M. Krzmanc, M. Logar, B. Budic, D. Suvorov, J. Am. Ceram. Soc. 94, 2464 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Council of Scientific and Industrial Research (CSIR), New Delhi for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidya, S., Solomon, S. & Thomas, J.K. Nanocrystalline scheelite SrWO4: a low temperature co-fired ceramic optical material-synthesis and properties. J Mater Sci: Mater Electron 25, 693–701 (2014). https://doi.org/10.1007/s10854-013-1631-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1631-2

Keywords

Navigation