Skip to main content
Log in

Evolution of surface roughness parameters and microstructure in two-phase nanocrystalline Co–Cu films electrodeposited onto ITO coated glass substrates at different deposition potentials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present research, we have studied the effect of deposition potential on the film composition, structural, and morphological properties of the electrodeposited Co–Cu thin films grown onto indium tin oxide coated glass substrates. For this purpose, the properties of the films were analyzed by means of X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM) characterization techniques. Structural characterizations showed that all of the Co–Cu films consist of hexagonal close-packed (hcp) Co and face-centered cubic (fcc) Cu phases. The hcp Co (002)/fcc Cu (111) peak intensity ratio was found to increase as the deposition potential decreased towards more negative values. An increase in the Co content in the Co–Cu films was observed as the applied deposition potential was made more negative according to EDX analysis. The decrease of the applied deposition potential towards more negative values also induced a decrease in the average crystallite sizes of both Co and Cu particles. AFM study indicated that a granular structure of the electrodeposited Co–Cu films regardless of deposition potential. As the applied deposition potential was made more negative, the surface roughness and particle size decreased considerably. Besides, two additional roughness parameters, surface kurtosis and the surface skewness were also obtained and discussed by means of the obtained results under the study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.R. Khelladi, L. Mentar, A. Azizi, L. Makhloufi, G. Schmerber, A. Dinia, J. Mater. Sci.: Mater. Electron. 23, 2245 (2012)

    Google Scholar 

  2. J.H. Min, J.H. Wu, J.U. Cho, Q.X. Liu, J.H. Lee, Y.D. Ko, J.S. Chung, J.H. Lee, Y.K. Kim, J. Magn. Magn. Mater. 304, e100 (2006)

    Article  Google Scholar 

  3. M. Yuasa, K. Kajikawa, T. Nakazawa, M. Hakamadab, M. Mabuchia, Scr. Mater 63, 132 (2010)

    Article  Google Scholar 

  4. C.A. Ross, Ann. Rev. Mater. Sci. 24, 159 (1994)

    Article  Google Scholar 

  5. J. Garcia-Torres, E. Gomez, E. Valles, J. Electroanal. Chem. 635, 63 (2009)

    Article  Google Scholar 

  6. I. Bakonyi, L. Peter, Progr. Mater. Sci. 55, 107 (2010)

    Article  Google Scholar 

  7. S.K. Ghosh, T. Bera, C. Saxena, S. Bhattacharya, G.K. Dey, J. Alloy, Compounds 475, 676 (2009)

    Article  Google Scholar 

  8. N. Rajasekaran, S. Mohan, J. Aroutchelvane, R. Jagannathan, J. Magn. Magn. Mater. 324, 2983 (2012)

    Article  Google Scholar 

  9. G.R. Pattanaik, S.C. Kashyap, D.K. Pandya, J. Magn. Magn. Mater. 219, 309 (2000)

    Article  Google Scholar 

  10. R. Hafizi, M.E. Ghazi, M. Izadifard, J. Supercond. Nov. Magn. 25, 2737 (2012)

    Article  Google Scholar 

  11. H. Zaman, A. Yamada, H. Fukuda, Y. Ueda, J. Electrochem. Soc. 145, 565 (1998)

    Article  Google Scholar 

  12. L. Mentar, Ionics 18, 223 (2012)

    Article  Google Scholar 

  13. O. Karaagac, M. Alper, H. Kockar, J. Magn. Mag. Mater. 322, 1098 (2010)

    Article  Google Scholar 

  14. S. Singh, S. Basu, Surf. Coat. Technol. 201, 952 (2006)

    Article  Google Scholar 

  15. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baro, Rev. Sci. Instrum. 78, 013705 (2007)

    Article  Google Scholar 

  16. A.J.C. Wilson, Proc. Phys. Soc. Lond. 80, 286 (1962)

    Article  Google Scholar 

  17. U. Sarac, M.C. Baykul, J. Mater. Sci. Technol. 28, 1004 (2012)

    Article  Google Scholar 

  18. G. Yildirim, S. Bal, M. Gulen, A. Varilci, E. Budak, M. Akdogan, Cryst. Res. Technol. 47, 195 (2012)

    Article  Google Scholar 

  19. G.P. Daniel, V.B. Justinvictor, P.B. Nair, K. Joy, P. Koshy, P.V. Thomas, Phys. B 405, 1782 (2010)

    Article  Google Scholar 

  20. M. Nenadović, S. Štrbac, Z. Rakočević, Appl. Surf. Sci. 256, 1652 (2010)

    Article  Google Scholar 

  21. B. Ma, A.K. Tieu, C. Lu, Z. Jiang, J. Mater. Process. Tech. 125–126, 657 (2002)

    Article  Google Scholar 

  22. S. Rajendran, K.K. Karuppanan, R. Pezhinkattil, Micron 43, 1299 (2012)

    Article  Google Scholar 

  23. V.K. Truong, R. Lapovok, Y.S. Estrin, S. Rundell, J.Y. Wang, C.J. Fluke, R.J. Crawford, E.P. Ivanova, Biomaterials 31, 3674 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Scientific Research Projects Commission of Bartın University under the Project Number 2012-2-58. The authors wish to thank K. O. Ay for providing the EDX measurements and M. Arikel for technical help during the AFM measurements. We also gratefully thank Bilecik Şeyh Edebali University, Turkey for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umut Sarac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarac, U., Baykul, M.C. Evolution of surface roughness parameters and microstructure in two-phase nanocrystalline Co–Cu films electrodeposited onto ITO coated glass substrates at different deposition potentials. J Mater Sci: Mater Electron 25, 39–45 (2014). https://doi.org/10.1007/s10854-013-1546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1546-y

Keywords

Navigation