Skip to main content
Log in

Effect of solvents on the structural, optical and morphological properties of Zn0.96Cu0.04O nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Zn0.96Cu0.04O nanoparticles were synthesized by co-precipitation method using different solvents like ethanol, water and mixer of ethanol and water in 50:50 ratios. Crystalline phases and optical studies of the nanoparticles were studied by X-ray diffraction (XRD) and UV–visible photo-spectrometer. The XRD showed that the prepared nanoparticles have different microstructure without changing a hexagonal wurtzite structure. The calculated average crystalline size was high for ethanol (27.3 nm) due to the presence of more defects and low for water (26 nm) due to the reduction of defects and vacancies. The energy dispersive X-ray analyses confirmed the presence of Cu in ZnO system and the weight percentage is nearly equal to their nominal stoichiometry within the experimental error. The presence of lower Zn and Cu percentage in the sample prepared using ethanol than other solvents was due low reaction rate which was confirmed by XRD spectra. Water solvent has relatively stronger transmittance in the visible region which leads to the industrial applications especially in opto-electronic devices. The average crystalline size is slowly decreased from 27.3 nm (ethanol) to 26 nm (water) whereas energy gap is steadily increased from 3.56 eV (ethanol) to 3.655 eV (water) when water concentration is increased from 0 to 100 % in ethanol. Existence of functional groups and bonding were analyzed by FTIR spectra. The observed blue shift of UV emission from ethanol (349 nm) to water (340 nm) solution and the high IUV/IG ratio in water solution in photoluminescence spectra was due to the decrease of crystalline size and defects/secondary phases. The intensity of blue–green band emission was gradually decreased due to the reduction of defects and vacancies when water concentration is increased from 0 to 100 % in ethanol solution, which was consistent with the XRD observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Singh, M.S.R. Rao, Phys Rev B 80, 045210 (2009)

    Article  Google Scholar 

  2. V.A. Karpina, V.I. Lazorenko, C.V. Lashkarev, V.D. Dobrowolski, L.I. Kopylova, V.A. Baturin, S.A. Lytuyn, V.P. Ovsyannikov, E.A. Mauvenko, Cryst Res Technol 39, 980 (2004)

    Article  CAS  Google Scholar 

  3. S.F. Pan, C. Song, X.J. Liu, Y.C. Yang, F. Zeng, Mater Sci Eng R 62, 1 (2008)

    Article  Google Scholar 

  4. N. Bai, T.Y. Tseng, J Appl Phys 74, 695 (1993)

    Article  CAS  Google Scholar 

  5. N.K. Zayer, R. Greef, K. Roger, A.J.C. Grellier, C.N. Pannell, Thin Solid Film 352, 179 (1999)

    Article  CAS  Google Scholar 

  6. J. Xie, H. Deng, Z.Q. Xu, Y. Li, J. Huang, J Cryst Growth 292, 227 (2006)

    Article  CAS  Google Scholar 

  7. C. Liewhiran, S. Phanichphant, Sensors 7, 650 (2007)

    Article  CAS  Google Scholar 

  8. L. Zi-Ling, D. Jian-Cheng, D. Jing-Jing, L. Fei-Fei, Mater Sci Eng B 150, 99 (2008)

    Article  Google Scholar 

  9. M. Sima, I. Enculescu, M. Sima, M. Enache, E. Vasile, J.P. Ansermet, Phys Stat Solidi B 244, 1522 (2007)

    Article  CAS  Google Scholar 

  10. J.J. Ding, H.X. Chen, X.G. Zhao, S.Y. Ma, J Phys Chem Solids 71, 346 (2010)

    Article  CAS  Google Scholar 

  11. Z.Q. Ma, W.G. Zhao, Y. Wang, Thin Solid Films 515, 8611 (2007)

    Article  CAS  Google Scholar 

  12. Z. Zhang, J.B. Yi, J. Ding, L.M. Wong, H.L. Seng, S.J. Wang, J.G. Tao, G.P. Li, G.Z. Xing, T.C. Sum, C.H.A. Huan, T. Wu, J Phys Chem C 112, 9579 (2008)

    Article  CAS  Google Scholar 

  13. J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, Appl Phys Lett 83, 3401 (2003)

    Article  CAS  Google Scholar 

  14. T. Yamada, A. Miyake, S. Kishimoto, H. Makino, N. Yamamoto, T. Yamamoto, Surf Coat Technol 202, 973 (2007)

    Article  CAS  Google Scholar 

  15. Y.M. Tao, S.Y. Ma, H.X. Chen, J.X. Meng, L.L. Hou, Y.F. Jia, X.R. Shang, Vacuum 85, 744 (2011)

    Article  CAS  Google Scholar 

  16. Z.B. Bahsi, A. Yavuz Oral, Opt Mater 29, 672 (2007)

    Article  Google Scholar 

  17. M.S. Niasari, F. Davar, A. Khansari, J Alloys Compd 509, 61 (2011)

    Article  Google Scholar 

  18. J. Yang, L. Fei, H. Liu, Y. Liu, M. Gao, Y. Zhang, L. Yang, J Alloys Compd 509, 3672 (2011)

    Article  CAS  Google Scholar 

  19. Y. Yang, H. Chen, B. Zhao, X. Bao, J Cryst Growth 263, 447 (2004)

    Article  CAS  Google Scholar 

  20. J.Q. Hu, Q. Li, N.B. Wong, C.S. Lee, S.T. Lee, Chem Mater 14, 1216 (2002)

    Article  CAS  Google Scholar 

  21. J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren, Nano Lett 3, 235 (2003)

    Article  CAS  Google Scholar 

  22. R. Chauhan, A. Kumar, R.P. Chaudharya, J Chem Pharm Res 2, 178 (2010)

    CAS  Google Scholar 

  23. R. Savu, R. Parra, E. Joanni, B. Jancar, S.A. Elizario, R. de Camargo, P.R. Bueno, J.A. Varela, E. Longo, M.A. Zaghate, J Cryst Growth 311, 4102 (2009)

    Article  CAS  Google Scholar 

  24. P.K. Sharma, R.K. Dutta, A.C. Pandey, J Magn Magn Mater 321, 4001 (2009)

    Article  CAS  Google Scholar 

  25. A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, J Alloys Compd 509, 5349 (2011)

    Article  Google Scholar 

  26. D. Wang, J. Zhou, G. Liu, J Alloys Compd 487, 545 (2009)

    Article  CAS  Google Scholar 

  27. L.M. Huang, A.L. Rosa, R. Ahuja, Phys Rev B 74, 075206 (2006)

    Article  Google Scholar 

  28. Y. Wei, D. Hou, S. Qiao, C. Zhen, G. Tang, Phys B 404, 2486 (2009)

    Article  CAS  Google Scholar 

  29. L.-H. Ye, A.J. Freeman, B. Delley, Phys Rev B 73, 033203 (2006)

    Article  Google Scholar 

  30. S. Muthukumaran, R. Gopalakrishnan, Opt Mater 34, 1946 (2012)

    Article  CAS  Google Scholar 

  31. M. Ferhat, A. Zaoui, R. Ahuja, Appl Phys Lett 94, 142502 (2009)

    Article  Google Scholar 

  32. H. Liu, J. Yang, Z. Hua, Y. Zhang, L. Yang, L. Xiao, Z. Xie, Appl Surf Sci 256, 4162 (2010)

    Article  CAS  Google Scholar 

  33. Y.S. Sonawane, K.G. Kanade, B.B. Kale, R.C. Aiyer, Mater Res Bull 43, 2719 (2008)

    Article  CAS  Google Scholar 

  34. O. Lupan, T. Pauporté, T.L. Bahers, B. Viana, I. Ciofini, Adv Funct Mater 21, 3564 (2011)

    Article  CAS  Google Scholar 

  35. T.S. Herng, S.P. Lau, S.F. Yu, S.H. Tsang, K.S. Teng, J.S. Chen, J Appl Phys 104, 103104 (2008)

    Article  Google Scholar 

  36. P.K. Sharma, M. Kumar, A.C. Pandey, J Nanopart Res 13, 1629 (2011)

    Article  CAS  Google Scholar 

  37. S. Muthukumaran, R. Gopalakrishnan, Phys B 407, 3450 (2012)

    Article  Google Scholar 

  38. P.P. Hankare, P.A. Chate, D.J. Sathe, P.A. Chavan, V.M. Bhuse, J Mater Sci Mater Electron 20, 374 (2009)

    Article  CAS  Google Scholar 

  39. J. Pelleg, E. Elish, J Vac Sci Technol A20, 754 (2002)

    Google Scholar 

  40. S. Baruah, J. Dutta, J Cryst Growth 311, 2549 (2009)

    Article  CAS  Google Scholar 

  41. S. Xu, Y. Shen, Y. Ding, Z.L. Wang, Adv Funct Mater 20, 1493 (2010)

    Article  CAS  Google Scholar 

  42. R. Viswanath, H. Amenitsch, D.D. Sarma, J Am Chem Soc 129, 4470 (2007)

    Article  Google Scholar 

  43. S.B. Rana, P. Singh, A.K. Sharma, A.W. Carbonari, R. Dogra, J. Optoelect, Adv Mater 12, 257 (2010)

    CAS  Google Scholar 

  44. S. Yamabi, H. Imai, J Mater Chem 12, 3773 (2002)

    Article  CAS  Google Scholar 

  45. B. Cheng, E.T. Samulski, Chem Commun 3, 986 (2004)

    Article  Google Scholar 

  46. R. Elilarassi, G. Chandrasekaran, J Mater Sci Mater Electron 21, 1169 (2010)

    Article  Google Scholar 

  47. B.D. Cullity, Elements of X-ray diffractions (Addison-Wesley, Reading, 1978)

    Google Scholar 

  48. G. Srinivasan, R.T.R. Kumar, J. Kumar, J Sol–Gel Sci Technol 43, 171 (2007)

    Article  CAS  Google Scholar 

  49. O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle, L.K. Ono, B.R. Cuenya, H. Heinrich, Appl Surf Sci 256, 1895 (2010)

    Article  CAS  Google Scholar 

  50. M. Wang, E.J. Kim, S.H. Hahn, C. Park, K.K. Koo, Cryst Growth Design 8, 501 (2008)

    Article  CAS  Google Scholar 

  51. L. Yan, L. Chuan-sheng, Trans Nonferrous Meter Soc China 19, 399 (2009)

    Article  Google Scholar 

  52. T. Ghoshal, S. Kar, S. Chaudhuri, J. Crys, Growth 293, 438 (2006)

    Article  CAS  Google Scholar 

  53. S. Muthukumaran, M. Ashok Kumar, J Mater Sci Mater Electron 23, 811 (2012)

    Article  CAS  Google Scholar 

  54. Y. Wang, G. Ouyang, L.L. Wang, L.M. Tang, D.S. Tang, C.Q. Sun, Chem Phys Lett 463, 383 (2008)

    Article  CAS  Google Scholar 

  55. Z. Yang, Z. Ye, Z. Xu, B. Zhao, Phys E 42, 116 (2009)

    Article  CAS  Google Scholar 

  56. K. Nakamoto, Infrared and Raman spectra of inorganic and coordination compounds, Parts-A and B (Wiley, New York, 1997)

    Google Scholar 

  57. M. Arshad, A. Azam, A.S. Ahmea, S. Mollah, A.H. Naqvi, J Alloys Compd 509, 8378 (2011)

    Article  CAS  Google Scholar 

  58. N. Chestony, T.D. Harris, R. Hull, L.E. Brus, J Phys Chem 90, 3393 (1986)

    Article  Google Scholar 

  59. C.K. Xu, K.K. Yang, Y.Y. Liu, L.W. Huang, H. Lee, J. Cho, H. Wang, J Phys Chem C 112, 19236 (2008)

    Article  CAS  Google Scholar 

  60. T. Yamamoto, H. Katayama-Yoshida, Jpn J Appl Phys 38, L166 (1999)

    Article  CAS  Google Scholar 

  61. Y. Dai, Y. Zhang, Q.K. Li, C.W. Nan, Chem Phys Lett 83, 358 (2002)

    Google Scholar 

  62. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J Appl Phys 79, 7983 (1996)

    Article  CAS  Google Scholar 

  63. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv Mater 13, 113 (2001)

    Article  CAS  Google Scholar 

  64. T. Tatsumi, M. Fujita, N. Kavamoto, M. Sasajima, Y. Horikoshi, J Appl Phys 43, 2602 (2004)

    CAS  Google Scholar 

  65. B. Lin, Z. Fu, Y. Jia, Appl Phys Lett 79, 943 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University Grant Commission (UGC), New Dehli, India, for financial support under the project [File no.: 41-968/2012 (SR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muthukumaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashok kumar, M., Muthukumaran, S. Effect of solvents on the structural, optical and morphological properties of Zn0.96Cu0.04O nanoparticles. J Mater Sci: Mater Electron 24, 4050–4059 (2013). https://doi.org/10.1007/s10854-013-1360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1360-6

Keywords

Navigation