Skip to main content
Log in

Raman and electrical studies of multiferroic BiFeO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Monophasic rhombohedral structure of BiFeO3 electroceramic is successfully synthesized by conventional solid state reaction route followed by slow step sintering schedule. Effect of sintering temperature is found to greatly influence its structural, dielectric, ferroelectric, capacitance and leakage behavior of bulk ceramic. From XRD analysis it is seen that at lower sintering temperature (750 °C) bulk BiFeO3 sample showed rhombohedral structure (R3c) along with few impurity phases, which become suppressed at higher sintering temperature and facilitates the compactness of grains and formation of dense microstructure. The leakage current and capacitive characteristic of the sample was improved significantly with increase in sintering temperature of BiFeO3 (850 °C). At higher sintering temperature, ferroelectric behavior of the sample is found to change its shape from semi elliptical lossy P–E features to a typical ferroelectric loop with improvement of its remnant as well as saturation polarization value. Raman spectra over the frequency range of 100–700 cm−1 have been systematically investigated. Besides the changes of the peak position and the line width of all modes, the prominent frequency shift, the line broadening and variation of the intensity were observed with increase in sintering temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z.Z. Ma, Z.M. Tian, J.Q. Li, C.H. Wang, S.X. Huo, H.N. Duan, S.L. Yuan, Solid State Sci. 13, 2196 (2011)

    Article  CAS  Google Scholar 

  2. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009)

    Article  CAS  Google Scholar 

  3. Q. Hang, Z. Xing, X. Zhu, M. Yu, Y. Song, J. Zhu, Z. Liu, Ceram. Int. 38S, S411 (2012)

    Article  Google Scholar 

  4. M. Fiebig, J. Phys. D 38, R123 (2005)

    Article  CAS  Google Scholar 

  5. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature (London) 442, 579 (2006)

    Article  Google Scholar 

  6. X.-Z. Chen, R.-L. Yang, J.-P. Zhou, X.-M. Chen, Q. Jiang, P. Liu, Solid State Sci. 19, 117 (2013)

    Article  CAS  Google Scholar 

  7. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005)

    Article  CAS  Google Scholar 

  8. Y.M. Sheu, S.A. Trugman, Y.-S. Park, S. Lee, H.T. Yi, S.-W. Cheong, Q.X. Jia, A.J. Taylor, R.P. Prasankumar, Appl. Phys. Lett. 100, 242904 (2012)

    Article  Google Scholar 

  9. R. Seshadri, N.A. Hill, Chem. Mater. 13, 2892 (2001)

    Article  CAS  Google Scholar 

  10. N.A. Hill, K.M. Rabe, Phys. Rev. B 59, 8759 (1999)

    Article  CAS  Google Scholar 

  11. J. Kreisel, P. Bouvier, J. Raman Spectrosc. 34, 524 (2003)

    Article  CAS  Google Scholar 

  12. D.A. Tenne, X.X. Xi, J. Am. Ceram. Soc. 91, 1820 (2008)

    Article  CAS  Google Scholar 

  13. S. Issing, A. Pimenov, V.Yu. Ivanov, A.A. Mukhin, J. Geurts, Phys. Rev. B 81, 024304 (2010)

    Article  Google Scholar 

  14. F. Kubel, H. Schmid, Acta Crystallogr. Sect. B: Struct. Sci. 46, 702 (1990)

    Article  Google Scholar 

  15. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)

    Article  CAS  Google Scholar 

  16. B.K. Roul, J. Supercond. 14(4), 529 (2001)

    Article  Google Scholar 

  17. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, 1978)

    Google Scholar 

  18. S.J. Clark, J. Robertson, Appl. Phys. Lett. 94, 022902 (2009)

    Article  Google Scholar 

  19. J.M. Calderon-Moreno, M. Yoshimura, Solid State Ion. 154/155, 125 (2002)

    Article  Google Scholar 

  20. A. Ubaldini, M.M. Carnasciali, J. Alloys Compd. 454, 374 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author Sangram Keshari Pradhan is gratefully acknowledged the research facilities received from Institute of Materials Science, Bhubaneswar and financial support received from CSIR, New Delhi (Sanction No. 9/750 (0006)/12 EMR-I) for carrying out research work. Author also thanks to Dr. B. K. Roul, Institute of Materials Science, Bhubaneswar for his useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Pradhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, S.K. Raman and electrical studies of multiferroic BiFeO3 . J Mater Sci: Mater Electron 24, 3581–3586 (2013). https://doi.org/10.1007/s10854-013-1288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1288-x

Keywords

Navigation