Skip to main content
Log in

Thermal stability and electrical characteristics of poly(2-ethyleaniline)-Au nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Present work reports the synthesis of poly2-ethyleaniline (PEANI) by oxidative polymerization of 2-ethyleaniline and its composite with gold nanoparticles (AuNPs) via in situ chemical synthesis route (simultaneous polymerization and precipitation). PEANI and its nanocomposite were characterized by thermogravimetric analysis-differential Scanning Calorimetry, X-ray diffraction and Fourier transform-infrared. The structural confirmation of the polymer was confirmed by FT-IR which shows strong absorption starting at ~1,600 cm−1 and extended to near-IR, Attributed to the presence of free carrier in the polymer. XRD of Polymer shows large X-rays peaks indicating that the material is rather amorphous with a certain degree of crystallinity where as XRD of PEANI-Au nanocomposite confirms the incorporation of AuNPs in composite. The TEM image showed the formation of PEANI-AuNPs core shell nanostructure. From TGA–DSC studies it was confirmed that the decomposition of the polymer in the composite is lowered by 254 °C as compare to PEANI alone, resulting in weak structure. Whereas I–V characteristics’ shows that the composite has about 10 % lower conductance values than the polymer alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.G. Li, M.R. Huang, W. Duan, Y.L. Yang, Chem. Rev. 102, 2925 (2002)

    Article  CAS  Google Scholar 

  2. C. Jeyaprabha, S. Sathiyanarayanan, G. Venkatachari, J. Appl. Polym. Sci. 101, 2144 (2006)

    Article  CAS  Google Scholar 

  3. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bre das, M. LoÈ gdlund, W. R. Salaneck, Nature 121, 397 (1999)

    Google Scholar 

  4. M.D. Levi, Y. Gofer, D. Aurbach, Polym. Adv. Technol. 13, 697 (2002)

    Article  CAS  Google Scholar 

  5. S.K. Dhawan, N. Singh, D. Rodrigues, Sci. Technol. Adv. Mater. 4, 105 (2003)

    Article  CAS  Google Scholar 

  6. J.A. Conklin, S.C. Huang, S.M. Huang, T.W. Wen, R.B. Kaner, Macromolecules 28, 6522 (1995)

    Article  CAS  Google Scholar 

  7. P. Enzel, T. Bein, Am. Ins. Phy. Conf. Proc. 262, 93 (1992)

    Article  CAS  Google Scholar 

  8. M.R. Nabid, A.A. Entezami, Iran. Polym. J. 12, 401 (2003)

    CAS  Google Scholar 

  9. D. Anakli, S. Cetinkaya, Curr. Appl. Phys. 10, 401 (2010)

    Article  Google Scholar 

  10. Y. Sun, Y. Xia, Science 298, 2176 (2002)

    Article  CAS  Google Scholar 

  11. A. Moores, F. Goettmann, New J. Chem. 30, 1121 (2006)

    Article  CAS  Google Scholar 

  12. X. Luo, A. Morrin, A.J. Killard, M.R. Smyth, Electroanalysis 18, 319 (2006)

    Article  CAS  Google Scholar 

  13. P.V. Kamat, J. Phys. Chem. B 106, 7729 (2002)

    Article  CAS  Google Scholar 

  14. J. P Novak, L. C. Brousseau, F. W. Vance, R. C. Johnson, B. I. Lemon, J. T. Hupp, D. L. Feldheim, J. Am. Chem. Soc. 122, 12029 (2000)

    Google Scholar 

  15. J.M. Wessels, H.G. Nothofer, W.E. Ford, F.V. Wrochem, F. Scholz, T. Vossmeyer, A. Schroedter, H. Weller, A. Yasuda, J. Am. Chem. Soc. 126, 3349 (2004)

    Article  CAS  Google Scholar 

  16. M. Brust, D. Bethell, C.J. Kiely, D.J. Schiffrin, Langmuir 14, 5425 (1998)

    Article  CAS  Google Scholar 

  17. P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, J. Phys. Chem. B 110, 7238 (2006)

    Article  CAS  Google Scholar 

  18. D.T. Thompson, Nano Today 2, 40 (2007)

    Article  Google Scholar 

  19. R. Gangopadhyay, A. De, Chem. Mater. 12, 608 (2000)

    Article  CAS  Google Scholar 

  20. S. Vohra, M. Kumar, S.K. Mittal, M.L. Singla, J. Mater. Sci.: Mater. Electron. (2012). doi:10.1007/s10854-012-0933-0

    Google Scholar 

  21. A. Drury, S. Chaure, M. Kroll, V. Nicolosi, N. Chaure, W.J. Blau, Chem. Mater. 19, 4252 (2007)

    Article  CAS  Google Scholar 

  22. N.V. Natalia, J. Stejskal, M. Trchova, J. Prokes, M. Omastová, Eur. Polym. J. 43, 233 (2007)

    Google Scholar 

  23. H. Yin, J. Yang, Macromol. Mater. Eng. 297, 203 (2012)

    Article  CAS  Google Scholar 

  24. D.S. Lin, S.M. Yang, J. App. Polym. Sci. 98, 1198 (2005)

    Article  CAS  Google Scholar 

  25. A.L. Schemid, S.I. Córdoba de Torresi, A.N. Bassetto, I.A. Carlos, J. Braz. Chem. Soc. 11, 317 (2000)

    Article  CAS  Google Scholar 

  26. M.L. Singla, S. Awasthi, A. Srivastava, D.V.S. Jain, Sens. Actuators A 136, 604 (2007)

    Article  CAS  Google Scholar 

  27. K. Mazid, S. Awasthi, M.L. Singla, Sens. Actuators A 135, 113 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Dr. Pawan Kapur, Director, Central Scientific Instruments Organization (CSIO), Chandigarh for permitted us to carry out research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Singla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vohra, S., Singh, N., Mittal, S.K. et al. Thermal stability and electrical characteristics of poly(2-ethyleaniline)-Au nanocomposite. J Mater Sci: Mater Electron 24, 2689–2694 (2013). https://doi.org/10.1007/s10854-013-1156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1156-8

Keywords

Navigation