Skip to main content
Log in

Magnetic, optical and structural studies on Ag doped ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The influences of annealing effects have been explored on the crystallinity, morphology, optical and magnetic properties of Ag–ZnO nanostructures prepared by a simple sol–gel method. X-ray powder diffraction, scanning electron microscope, high resolution transmission electron microscope (HRTEM), vibrating sample magnetometer and photoluminescence spectroscopy (PL) have been used to characterize the crystal structures, surface morphology, magnetic and optical properties of the pure ZnO and Ag–ZnO nanostructures respectively. The synthesized Ag–ZnO nanostructures are found to have hexagonal wurtzite crystal structures and their grain size increases while lattice strain decreases on annealing. From HRTEM observation, it is found that the annealed samples show nanorod like structures with Ag nanoparticles (NPs) embedded on the surface. Due to annealing effect, Ag–ZnO shows higher saturation magnetization at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K. Hembram, D. Sivaprahasam, T.N. Rao, J Euro Cer Soc 31, 1905–1913 (2011)

    Article  CAS  Google Scholar 

  2. R. Georgekutty, M.K. Seery, S.C. Pillai, J Phys Chem C 112, 13563–13570 (2008)

    Article  CAS  Google Scholar 

  3. W. Lu, G. Liu, S. Gao, S. Xing, J. Wang, NANO 19, 445711–445721 (2008)

    Google Scholar 

  4. A.A. Hanna, S.M. Mousa, M.A. Sherief, G.M. Elkomy, J Am Sci 6, 296–300 (2010)

    Google Scholar 

  5. S. Bhattacharyya, A. Gedanken, J Phys Chem C 11, 2659–2665 (2008)

    Google Scholar 

  6. R.H. Wang, J.H. Xin, X.M. Tao, In Chem 44, 3926–3930 (2005)

    CAS  Google Scholar 

  7. L. Yu, F. Qu, X. Wu, J Alloy Comp 504, L1–L4 (2010)

    Article  CAS  Google Scholar 

  8. J. Mou, W. Zhang, J. Fan, H. Deng, W. Chen, J Alloy Comp 501, 961–965 (2011)

    Article  Google Scholar 

  9. S.S. Park, J.M. Lee, S. Kim, S. Kim, M. Yi, S. Kim, S. Maeng, S. Fujita, Nano 19, 245708–245713 (2008)

    Google Scholar 

  10. R. Liu, Y. Haung, A. Xiao, H. Liu, J Alloy Comp 503, 103–110 (2010)

    Article  CAS  Google Scholar 

  11. Z. Chen, X.X. Li, N. Chen, H. Wang, G.P. Du, Y.M. Suen, J Sol-Gel Sci Technol 62, 252–258 (2012)

    Article  CAS  Google Scholar 

  12. A. Sharma, M. Varshney, S. Kumar, K.D. Verma, R. Kumar, Nanomater Nanotechnol 1, 29–33 (2011)

    Google Scholar 

  13. R. Chen, C. Zou, J. Bian, A. Sandhu, Nanotech 22, 105706–105714 (2011)

    Article  Google Scholar 

  14. A.S. Kuznetsov, Y. Lu, S. Turner, M.V. Shestakov, V.K. Tikhomirov, D. Kirilenko, J. Verbeeck, A.N. Baranov, V.V. Moshchalkov, Opt Mat Exp 2, 723–732 (2012)

    Article  CAS  Google Scholar 

  15. K.J. Chen, T.H. Fung, L.W. Ji, S.J. Chang, S.J. Young, Y.J. Hsiao, App Surface Sci 54, 5791–5795 (2008)

    Article  Google Scholar 

  16. L. Duan, W. Zhang, X. Yu, Z. Jiang, L. Luan, Y. Chen, D. Li, App Surface Sci 258, 10064–10067 (2012)

    Article  CAS  Google Scholar 

  17. S.D. Shinde, G.E. Patil, D.D. Kajale, V.G. Wagh, V.B. Gaikward, G.H. Jain, Int J Smart Sens Intell Syst 5, 277–294 (2012)

    CAS  Google Scholar 

  18. Bogush GH, Zukoske CF. J Colloid Interface Sci 142 (1991)

  19. O. Lupan, L. Chow, L.K. Ono, B.R. Cuenya, G. Chai, H. Khallaf, S. Park, A. Schulte, J Phys Chem C 114, 12401–12408 (2010)

    Article  CAS  Google Scholar 

  20. S. Sirinivasan, R.T. Rajendrakumar, J. Kumar, J Sol-Gel Sci Technol 43, 171–177 (2007)

    Article  Google Scholar 

  21. M. Lee, T.G. Kim, Y. Sung, J Phys Chem C 112, 10079–10082 (2008)

    Article  CAS  Google Scholar 

  22. J. Xie, Q. Wu, Mat Lett 64, 389–392 (2010)

    Article  CAS  Google Scholar 

  23. C. Karunakaran, V. Rajeshwari, P. Gomathisankar, J Alloy Comp 508, 587–591 (2010)

    Article  CAS  Google Scholar 

  24. G. Xiong, U. Pali, J.G. Serrano, K.B. Ucer, R.T. Williams, Phys Stat Sol 3, 3577–3581 (2006)

    Article  CAS  Google Scholar 

  25. B.K. Choi, D.H. Chang, Y.S. Yoon, S.J. Kang, Mat Sci Mater Elect 17, 1011–1015 (2006)

    Article  CAS  Google Scholar 

  26. N. Gopalakrishnan, L. Balakrishnan, A. Brindha, G. Jayalakshmi, Cryst Res Technol 47, 45–52 (2012)

    Article  CAS  Google Scholar 

  27. A.K. Sing, J Opto Adv Mat 12, 2255–2259 (2010)

    Google Scholar 

  28. M. Hei, F. Tian, D. Springer, I.A. Putra, G.Z. Xing, App Phys Letts 99, 222511–222513 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The author (Ashaq) would like thank to Dr. R. Krishnan, Material Science Group (MSG), IGCAR, Kalpakam, India for his kind help of magnetic studies and constant support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Basheer Ahamed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, A.H., Basheer Ahamed, M., Manikandan, E. et al. Magnetic, optical and structural studies on Ag doped ZnO nanoparticles. J Mater Sci: Mater Electron 24, 2302–2308 (2013). https://doi.org/10.1007/s10854-013-1093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1093-6

Keywords

Navigation