Skip to main content
Log in

On the applicability of a semi-analytical approach to determining the transient electron transport response of gallium arsenide, gallium nitride, and zinc oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We critically examine the applicability of the semi-analytical approach of Shur (M. Shur, Electron Lett 12, 615 (1976)) in evaluating the transient electron transport response of gallium arsenide, gallium nitride, and zinc oxide. In particular, we contrast results obtained using this semi-analytical approach of Shur with those obtained using Monte Carlo simulations of the electron transport. Our approach will be to examine the response of an ensemble of electrons to the application of a constant and uniform applied electric field. For the purposes of this analysis, three aspects of the transient electron transport response will be considered: (1) the dependence of the electron drift velocity on the time elapsed since the onset of the applied electric field, (2) the dependence of the average electron energy on the time elapsed since the onset of the applied electric field, and (3) the dependence of the average electron displacement on the time elapsed since the onset of the applied electric field. The results obtained show that this semi-analytical approach of Shur produces results that are very similar to those produced using Monte Carlo simulations. Thus, this semi-analytical approach of Shur should be applicable for the treatment of non-uniform and time-varying electric fields, making it a useful tool for the treatment of the transient electron transport response within electron device configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In the Kane model, the energy bands are assumed to be non-parabolic, spherical, and of the form \(\frac{\hbar^{2} k^{2}}{2 {m}^{*}} = E \left( 1 + \alpha E \right)\), where \(\hbar k\) denotes the crystal momentum, E represents the energy, m* is the effective mass of the electrons within this valley, and α is the non-parabolicity coefficient [49].

References

  1. C. Liu, F. Yun, H. Morkoç, J. Mater. Sci.: Mater. Electron. 16, 555 (2005)

    Article  CAS  Google Scholar 

  2. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  3. A. Ashrafi, C. Jagadish, J. Appl. Phys. 102, 071101 (2007)

    Article  Google Scholar 

  4. R.P. Davies, C.R. Abernathy, S.J. Pearton, D.P. Norton, M.P. Ivill, F. Ren, Chem. Eng. Comm. 196, 1030 (2009)

    Article  CAS  Google Scholar 

  5. Ü. Özgür, D. Hofstetter, H. Morkoç, Proc. IEEE 98, 1255 (2010)

    Article  Google Scholar 

  6. F. Scholz, Semiconductor Sci. Tech. 27, 024002 (2012)

    Article  Google Scholar 

  7. R.S. Pengelly, S.M. Wood, J.W. Milligan, S.T. Sheppard, W.L. Pribble, IEEE Trans. Micro. Theor. Tech. 60, 1764 (2012)

    Article  CAS  Google Scholar 

  8. S. Strite, H. Morkoç, J. Vac. Sci. Technol. B 10, 1237 (1992)

    Article  CAS  Google Scholar 

  9. H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Weinheim, 2009)

    Google Scholar 

  10. H.P. Maruska, J.J. Tietjen, Appl. Phys. Lett. 15, 327 (1969)

    Article  CAS  Google Scholar 

  11. D. Visalli, M. Van Hove, P. Srivastava, J. Derluyn, J. Das, M. Leys, S. Degroote, K. Cheng, M. Germain, G. Borghs, Appl. Phys. Lett. 97, 113501 (2010)

    Article  Google Scholar 

  12. I.B. Rowena, S.L. Selvaraj, T. Egawa, IEEE Electron Dev. Lett. 32, 1534 (2011)

    Article  CAS  Google Scholar 

  13. B.A. Danilchenko, I.A. Obukhov, T. Paszkiewicz, S. Wolski, A. Jeżowski, Solid State Commun. 144, 114 (2007)

    Article  CAS  Google Scholar 

  14. K. Jagannadham, E.A. Berkman, N. Elmasry, J. Vac. Sci. Technol. A 26, 375 (2008)

    Article  CAS  Google Scholar 

  15. B.E. Foutz, S.K. O’Leary, M.S. Shur, L.F. Eastman, J. Appl. Phys. 85, 7727 (1999)

    Article  CAS  Google Scholar 

  16. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 118, 79 (2001)

    Article  Google Scholar 

  17. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Electron. Mater. 32, 327 (2003)

    Article  Google Scholar 

  18. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 17, 87 (2006)

    Article  Google Scholar 

  19. M. Shur, M. Shatalov, A. Dobrinsky, R. Gaska, Deep UV LEDs, in Advances in GaN and ZnO-based Thin Film, Bulk, and Nanostructured Materials and Devices. Series in Materials Science, ed. by S. Pearton (Springer, Berlin, 2012), pp. 83–120

  20. D.H. Levy, S.F. Nelson, J. Vac. Sci. Technol. A 30, 018501 (2012)

    Article  Google Scholar 

  21. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Moroç, Super. Micro. 48, 458 (2010)

    Article  CAS  Google Scholar 

  22. C.-K. Yang, K.S. Dy, Solid State Commun. 88, 491 (1993)

    Article  CAS  Google Scholar 

  23. J.D. Albrecht, P.P. Ruden, S. Limpijumnong, W.R.L. Lambrecht, K.F. Brennan, J. Appl. Phys. 86, 6864 (1999)

    Article  CAS  Google Scholar 

  24. J.F. Muth, R.M. Kolbas, A.K. Sharma, S. Oktyabrsky, J. Narayan, J. Appl. Phys. 85, 7884 (1999)

    Article  CAS  Google Scholar 

  25. D.K. Ferry, Phys. Rev. B 12, 2361 (1975)

    Article  CAS  Google Scholar 

  26. M.A. Littlejohn, J.R. Hauser, T.H. Glisson, Appl. Phys. Lett. 26, 625 (1975)

    Article  CAS  Google Scholar 

  27. P. Das, D.K. Ferry, Solid-State Electron. 19, 851 (1976)

    Article  CAS  Google Scholar 

  28. B. Gelmont, K. Kim, M. Shur, J. Appl. Phys. 74, 1818 (1993)

    Article  CAS  Google Scholar 

  29. V. W. L. Chin, T. L. Tansley, T. Osotchan, J. Appl. Phys. 75, 7365 (1994)

    Article  CAS  Google Scholar 

  30. N.S. Mansour, K.W. Kim, M.A. Littlejohn, J. Appl. Phys. 77, 2834 (1995)

    Article  CAS  Google Scholar 

  31. J. Kolník,  İ. H. Oğuzman, K.F. Brennan, R. Wang, P.P. Ruden, Y. Wang, J. Appl. Phys. 78, 1033 (1995)

    Article  Google Scholar 

  32. M. Shur, B. Gelmont, M.A. Khan, J. Electron. Mater. 25, 777 (1996)

    Article  CAS  Google Scholar 

  33. B.E. Foutz, L.F. Eastman, U.V. Bhapkar, M.S. Shur, Appl. Phys. Lett. 70, 2849 (1997)

    Article  CAS  Google Scholar 

  34. U.V. Bhapkar, M.S. Shur, J. Appl. Phys. 82, 1649 (1997)

    Article  CAS  Google Scholar 

  35. J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 1446 (1998)

    Article  CAS  Google Scholar 

  36. N.G. Weimann, L.F. Eastman, D. Doppalapudi, H.M. Ng, T.D. Moustakas, J. Appl. Phys. 83, 3656 (1998)

    Article  CAS  Google Scholar 

  37. J.D. Albrecht, R.P. Wang, P.P. Ruden, M. Farahmand, K.F. Brennan, J. Appl. Phys. 83, 4777 (1998)

    CAS  Google Scholar 

  38. D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105, 399 (1998)

    Article  CAS  Google Scholar 

  39. B. Guo, U. Ravaioli, M. Staedele, Comput. Phys. Commun. 175, 482 (2006)

    Article  CAS  Google Scholar 

  40. F. Bertazzi, M. Goano, E. Bellotti, J. Electron. Mater. 36, 857 (2007)

    Article  CAS  Google Scholar 

  41. E. Furno, F. Bertazzi, M. Goano, G. Ghione, E. Bellotti, Solid-State Electron. 52, 1796 (2008)

    Article  CAS  Google Scholar 

  42. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Solid State Commun. 150, 2182 (2010)

    Article  Google Scholar 

  43. W.A. Hadi, S.K. O’Leary, M.S. Shur, L.F. Eastman, Solid State Commun. 151, 874 (2011)

    Article  CAS  Google Scholar 

  44. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Appl. Phys. 112, 033720 (2012)

    Article  Google Scholar 

  45. J.G. Ruch, IEEE Trans. Electron Devices 19, 652 (1972)

    Article  CAS  Google Scholar 

  46. M.S. Shur, L.F. Eastman, IEEE Trans. Electron Devices 26, 1677 (1979)

    Article  Google Scholar 

  47. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 88, 152113 (2006)

    Article  Google Scholar 

  48. M. Shur, Electron. Lett. 12, 615 (1976)

    Article  Google Scholar 

  49. W. Fawcett, A.D. Boardman, S. Swain, J. Phys. Chem. Solids 31, 1963 (1970)

    Article  CAS  Google Scholar 

  50. P. Lugli, D.K. Ferry, IEEE Trans. Electron Devices 32, 2431 (1985)

    Article  Google Scholar 

  51. K. Seeger, Semiconductor Physics: An Introduction, 9th ed. (Springer, Berlin, 2004)

    Google Scholar 

  52. S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, J. Appl. Phys. 83, 826 (1998)

    Article  Google Scholar 

  53. S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, Solid State Commun. 105, 621 (1998)

    Article  Google Scholar 

  54. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, Appl. Phys. Lett. 87, 222103 (2005)

    Article  Google Scholar 

  55. S.K. O’Leary, B.E. Foutz, M.S. Shur, L.F. Eastman, J. Mater. Sci.: Mater. Electron. 21, 218 (2010)

    Article  Google Scholar 

  56. W.A. Hadi, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 10.1007/s10854-012-0782-x

  57. W.A. Hadi, R. Cheekoori, M.S. Shur, S.K. O’Leary, J. Mater. Sci.: Mater. Electron. 10.1007/s10854-012-0818-2

  58. S. Adachi, Properties of Group-IV, III–V, and II–VI Semiconductors (Wiley, Chichister, 2005)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada. The work at Rensselaer Polytechnic Institute (M. S. Shur) was supported primarily through the Engineering Research Centers program of the National Science Foundation under the NSF Cooperative Agreement No. EEC-0812056 and in part by New York State under NYSTAR contract C090145.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen K. O’Leary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadi, W.A., Shur, M.S. & O’Leary, S.K. On the applicability of a semi-analytical approach to determining the transient electron transport response of gallium arsenide, gallium nitride, and zinc oxide. J Mater Sci: Mater Electron 24, 1624–1634 (2013). https://doi.org/10.1007/s10854-012-0986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0986-0

Keywords

Navigation