Skip to main content
Log in

Improvement on ferroelectric and piezoelectric properties of (K0.5Na0.5)NbO3 ceramic with Sr0.53Ba0.47Nb2O6 addition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x)(K0.5Na0.5)NbO3–xSr0.53Ba0.47Nb2O6 [(1 − x)KNN–xSBN] ceramics were synthesized by solid-state reaction technique. X-ray diffraction analysis of samples indicated that a single orthorhombic perovskite phase was formed as the x value is ≤0.02. Optimized piezoelectric properties with d 33 = 126 pC/N, K p = 0.39, Q m  = 201 were obtained for 0.98KNN–0.02SBN ceramic. The dielectric properties studies illustrated that both peaks of orthorhombic to tetragonal (T OT ) and ferroelectric tetragonal to paraelectric cubic (T C ) phase transition shifted to lower temperature. The maximum remanent polarization (P r  = 22.5 μC/cm2) for 0.98KNN–0.02SBN was obtained by the polarization versus electric field (PE) researches. AC conductivity of samples increased with increasing the temperature. The calculated activation energy of the dc conductivity was 0.9654 eV, which may be due to thermal activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Egerton, D.M. Dillom, Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J. Am. Ceram. Soc. 42, 438–442 (1959)

    Article  CAS  Google Scholar 

  2. L.J. Liu, M.X. Wu, Y.M. Huang, L. Fang, H.Q. Fan, H. Dammak, M.P. Thi, Effect of mechanical activation on the structure and ferroelectric property of Na0.5K0.5NbO3. Mater. Res. Bull. 46, 1467–1472 (2011)

    Article  CAS  Google Scholar 

  3. H. Birol, D. Damjanovic, N. Setter, Preparation and characterization of (K0.5Na0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 26, 861–866 (2006)

    Article  CAS  Google Scholar 

  4. Y. Guo, K. Kakimoto, H. Ohsato, Dielectric and piezoelectric properties of lead free (Na0.5K0.5)NbO3-SrTiO3 ceramics. Solid State Commun. 129, 279–284 (2004)

    Article  CAS  Google Scholar 

  5. S.Y. Chu, W. Water, Y.D. Juang, J.T. Liaw, S.B. Dai, Piezoelectric and potassium niobate ceramic system. Ferroelectrics 297, 11–17 (2003)

    CAS  Google Scholar 

  6. G.Z. Zang, L.B. Li, X.J. Yi, J. Du, Y. Li, Electrical properties of B site substituted (K0.48Na0.52)(W2/3Bi1/3)XNb1−XO3 piezoceramics. J. Mater. Sci.: Mater. Electron. 23, 977–980 (2012)

    Article  CAS  Google Scholar 

  7. J. Du, X.J. Yi, Z.J. Xu, C.L. Ban, T. Wang, B.Z. Weng, K.J. Liao, Z.F. Huang, C.M. Wang, Dielectric and piezoelectric properties of (K0.48Na0.52)Nb1−x(Mo3/4Sr1/4)xO3 lead-free ceramics. J Mater Sci. Mater. Electron. (2012). doi:10.1007/s10854-012-0702-0

  8. G.Z. Zang, X.J. Yi, J. Du, Z.J. Xu, R.Q. Chu, P. Fu, W. Li, Microstructure and electrical properties of (Na1.015−xKx)NbO3 lead-free piezoceramics. J. Mater. Sci.: Mater. Electron. 22, 1282–1285 (2011)

    Article  CAS  Google Scholar 

  9. G.Z. Zang, J.F. Wang, H.C. Chen, W.B. Su, C.M. Wang, Perovskite (Na0.5K0.5)1−x(LiSb)xNb1−xO3 lead-free piezoceramics. Appl. Phys. Lett. 88, 212908 (2006)

    Article  Google Scholar 

  10. G.Z. Zang, X.J. Yi, J. Du, Z.J. Xu, X.P. Pu, P. Fu, L.M. Zhao, Lead-free (K0.5Na0.5)0.95(LiSb)0.05Nb0.95O3–BaTiO3 piezoceramics. J. Electroceram. 25, 85–88 (2010)

    Article  CAS  Google Scholar 

  11. Z. Yang, Y. Chang, L. Wei, Phase transitional behavior and electrical properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96–xTaxSb0.04)O3 piezoelectric ceramics. Appl. Phys. Lett. 90, 042911 (2007)

    Article  Google Scholar 

  12. M. Matsubara, K. Kikuta, S. Hirano, Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3–K5.4CuTa10O29 ceramics. J. Appl. Phys. 97, 114105 (2005)

    Article  Google Scholar 

  13. E. Hollenstein, M. Davis, D. Damjanovic, N. Setter, Piezoelectric properties of Li- and Ta-modified K0.5Na0.5NbO3 ceramics. Appl. Phys. Lett. 87, 182905 (2005)

    Article  Google Scholar 

  14. Y.T. Lu, X.M. Chen, D.Z. Jin, X. Hu, Dielectric and ferroelectric properties of (1 − x)(Na0.5K0.5)NbO3–xBaTiO3 ceramics. Mater. Res. Bull. 40, 1847–1855 (2005)

    Article  CAS  Google Scholar 

  15. J. Liu, J. Zhu, X. Li, M. Wang, X. Zhu, J. Zhu, D. Xiao, Effects of CuO doping on the electrical properties of 0.98K0.5Na0.5NbO3–0.02BiScO3 lead-free piezoelectric ceramics. Mater. Lett. 31, 948–950 (2011)

    Article  Google Scholar 

  16. R. Zuo, X. Fang, C. Ye, Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3–(Bi0.5Na0.5)TiO3 ceramics. Appl. Phys. Lett. 90, 092904 (2007)

    Article  Google Scholar 

  17. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma et al., Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  18. D. Lin, K.W. Kwok, L.H.W. Chan, Structure, piezoelectric and ferroelectric properties of Li- and Sb-modified K0.5Na0.5NbO3 lead-free ceramics. J. Phys. D Appl. Phys. 40, 3500–3505 (2007)

    Article  CAS  Google Scholar 

  19. D. Lin, K.W. Kwok, L.H.W. Chan, Structure, dielectric, and piezoelectric properties of CuO-doped K0.5Na0.5NbO3–BaTiO3 lead-free ceramics. J. Appl. Phys. 101, 074113 (2007)

    Article  Google Scholar 

  20. T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT. J. Electroceram. 19, 113–126 (2007)

    Article  Google Scholar 

  21. A.B. Kounga, S.T. Zhang, W. Jo, T. Granzow, J. Rödel, Morphotropic phase boundary in (1 − x)Bi0.5Na0.5TiO3xK0.5Na0.5NbO3 lead-free piezoceramics. Appl. Phys. Lett. 92, 222902 (2008)

    Article  Google Scholar 

  22. Y.F. Chang, Z.P. Yang, L.L. Wei, B. Liu, Effects of AETiO3 additions on phase structure, microstructure and electrical properties of (K0.5Na0.5)NbO3 ceramics. Mater. Sci. Eng. A 437, 301–305 (2006)

    Article  Google Scholar 

  23. H.Y. Park, C.W. Ahn, H.C. Song, J.H. Lee, S. Nahma, Microstructure and piezoelectric properties of 0.95 (Na0.5K0.5)NbO3–0.05BaTiO3 ceramics. Appl. Phys. Lett. 89, 062906 (2006)

    Article  Google Scholar 

  24. Y. Guo, K. Kakimoto, H. Ohsato, Structure and electrical properties of lead-free (Na0.5K0.5)NbO3–BaTiO3 ceramics. Jpn. J. Appl. Phys. 43, 6662–6666 (2004)

    Article  CAS  Google Scholar 

  25. S.J. Zhang, R. Xia, R. Shrout Thomas, G.Z. Zang, J.F. Wang, Characterization of lead free (K0.5Na0.5)NbO3–LiSbO3 piezoceramic. Solid State Commun. 141, 675–679 (2007)

    Article  CAS  Google Scholar 

  26. J.G. Wu, D.Q. Xiao, Y.Y. Wang, J.G. Zhu, P. Yu, Y.H. Jiang, Compositional dependence of phase structure and electrical properties in (K0.42Na0.58)NbO3–LiSbO3 lead-free ceramics. J. Appl. Phys. 102, 114113-1–114113-5 (2007)

    Google Scholar 

  27. R.Z. Zuo, S. Su, J. Fu, Z.K. Xu, Structures and electrical properties of (Na0.5K0.5)NbO3–Li(Ta0.5Nb0.5) O3 lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 20, 469–472 (2009)

    Article  CAS  Google Scholar 

  28. Y.B. Hu, X.Y. Liu, M.H. Jiang, X.W. Zhang, Phase structures and electrical properties of LiSbO3 doped 0.994K0.5Na0.5NbO3–0.004K0.54Cu1.3Ta10O29–0.002BiMnO3 piezoelectric ceramics. J. Mater. Sci. Mater. Electron. (2012). doi:10.1007/s10854-012-0750-5

  29. J.T. Zeng, Y.H. Zhang, L.Y. Zheng, G.R. Li, Q.R. Yin, Enhanced ferroelectric properties of potassium sodium niobate ceramics modified by small amount of K3Li2Nb5O15. J. Am. Ceram. Soc. 92, 752–754 (2009)

    Article  CAS  Google Scholar 

  30. Y.L. Wang, Y.Q. Lu, M.J. Wu, D. Wang, Y.X. Li, Y.L. Wang, Phase structure and enhanced piezoelectric properties of lead-free ceramics (1 − x)(K0.48Na0.52)NbO3–(x/5.15) K2.9Li1.95Nb5.15O15.3 with high curie temperature. Int. J. Appl. Ceram. Technol. 9, 221–227 (2012)

    Article  Google Scholar 

  31. M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S. Hirano, Processing and piezoelectric properties of lead-free (K, Na)(Nb, Ta)O3 ceramics. J. Am. Ceram. Soc. 88, 1190–1196 (2005)

    Article  CAS  Google Scholar 

  32. K. Kakimoto, K. Akao, Y. Guo, H. Ohsato, Raman scattering study of piezoelectric (Na0.5K0.5)NbO3–LiNbO3 ceramics. Jpn. J. Appl. Phys. 44, 7064–7067 (2005)

    Article  CAS  Google Scholar 

  33. S.H. Park, C.W. Ahn, S. Nahm, J.S. Song, Microstructure and piezoelectric properties of ZnO-added (Na0.5K0.5)NbO3 ceramics. Jpn. J. Appl. Phys. 43, L1072–L1074 (2004)

    Article  CAS  Google Scholar 

  34. K. Datta, P.A. Thomas, Structural investigation of a novel perovskite-based lead-free ceramics: xBiScO3–(1x) BaTiO3. J. Appl. Phys. 107, 043516 (2010)

    Article  Google Scholar 

  35. R. Liedtke, M. Grossmann, R. Waser, Capacitance and admittance spectroscopy analysis of hydrogen-degraded Pt/(Ba, Sr)TiO3/Pt thin-film capacitors. Appl. Phys. Lett. 77, 2045–2047 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Guangxi (Nos. 2011GXNSFB018009, 2011GXNSFB018012 and 2012GXNSFDA053024), Natural Science Foundation of China (Nos. 51102058, 21061004 and 50962004), Research start-up funds Doctor of Guilin University of Technology (No.002401003281, No.002401003282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Chen, X., Zhou, H. et al. Improvement on ferroelectric and piezoelectric properties of (K0.5Na0.5)NbO3 ceramic with Sr0.53Ba0.47Nb2O6 addition. J Mater Sci: Mater Electron 24, 770–775 (2013). https://doi.org/10.1007/s10854-012-0808-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0808-4

Keywords

Navigation