Skip to main content
Log in

Microstructure and dielectric properties of glass/Al2O3 composites with various low softening point borosilicate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of various low softening point borosilicate glasses on both the sintering behavior and dielectric properties of glass/Al2O3 composites were investigated by FTIR, DSC, XRD, SEM and EDS. Results show that the addition of alkali oxides and PbO can decrease the glass softening temperature. While, the addition of Al2O3 and more SiO2 content in the glass can increase the continuity of glass network and further increase the glass softening temperature of samples. Glass with lower softening temperature has more time to flow to finish the densification of samples, and that can contribute to get better sintered composites. By contrast, CaO–PbO–B2O3–SiO2–Na2O–K2O glass/Al2O3 composites sintered at 875 °C for 15 min exhibit better properties of a bulk density of 3.06 g/cm3, a porosity of 0.17 %, a λ value of 2.47 W/m K, a ε r value of 8.05 and a tan δ value of 8.8 × 10−4 at 10 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Zhu, M. Liu, H. Zhou, Preparation and properties of low-temperature co-fired ceramic of CaO–SiO2–B2O3 system. J. Mater. Sci.: Mater. Electron. 17, 637–641 (2006). doi:10.1007/s10854-006-0011-6

    Article  CAS  Google Scholar 

  2. P.S. Anjana, M.T. Sebastian, Microwave dielectric properties and low-temperature sintering of cerium oxide for LTCC applications. J. Am. Ceram. Soc. 92(1), 96–104 (2009). doi:10.1111/j.1551-2916.2008.02756.x

    Google Scholar 

  3. S. Kemethmuller, M. Hagymasi, A. Stiegelschmitt, Viscous flow as driving force for the densification of low-temperature co-fired ceramics. J. Am. Ceram. Soc. 90(1), 64–70 (2007). doi:10.1111/j.1551-2916.2006.01362.x

    Article  Google Scholar 

  4. R.E. Mistler, E.R. Twiname, Tape casting: theory and practice (The American Ceramic Society, Westerville, 2000)

    Google Scholar 

  5. R. Muller, R. Meszaros, B. Peplinski, Dissolution of alumina, sintering, and crystallization in glass ceramic composites for LTCC. J. Am. Ceram. Soc. 92(8), 1703–1708 (2009). doi:10.1111/j.1551-2916.2009.03089.x

    Article  Google Scholar 

  6. Y. Zhang, S. Bai, M. Miao, Microstructure and mechanical properties of an alumina-glass low temperature co-fired ceramic. J. Eur. Ceram. Soc. 29, 1077–1082 (2009). doi:10.1111/j.1551-2916.2009.03089.x

    Article  CAS  Google Scholar 

  7. Y.J. Seo, J.H. Jung, Y.S. Cho, Influences of particle size of alumina filler in an LTCC system. J. Am. Ceram. Soc. 90(2), 649–652 (2007). doi:10.1111/j.1551-2916.2006.01438.x

    Google Scholar 

  8. E. Markus, R. Torsten, A. Wolfgang, Influence of the glass phase on densification, microstructure, and properties of low-temperature co-fired ceramics. J. Appl. Technol. 3(6), 428–436 (2006). doi:10.1111/j.1744-7402.2006.02108.x

    Google Scholar 

  9. Y.S. Cho, Y.H. Jo, H.R. Choi, Influences of alkali oxides on crystallization and dielectric properties of anorthite-based low temperature dielectrics. J. Ceram. Soc. Jpn. 116(7), 825–828 (2008). doi:10.2109/jcersj2.116.825

    Article  CAS  Google Scholar 

  10. M. Arora, S. Baccaro, G. Sharma, Radiation effects on PbO–Al2O3–B2O3–SiO2 glass by FTIR spectroscopy. Nucl. Instrum. Methods Phys. Res. B 267, 817–820 (2009). doi:10.1016/j.nimb.2009.01.003

    Article  CAS  Google Scholar 

  11. T. Sun, H.N. Xiao, W.M. Guo, Effect of Al2O3 content on BaO–Al2O3–B2O3–SiO2 glass sealant for solid oxide fuel cell. Ceram. Int. 36, 821–826 (2010). doi:10.1016/j.ceramint.2009.09.045

    Article  CAS  Google Scholar 

  12. X.H. Zhou, B. Li, S.R. Zhang, Effect of Ca/Si ratio on the microstructures and properties of CaO–B2O3–SiO2 glass-ceramics. J. Mater. Sci. Mater. Electron. 20(3), 262–266 (2009). doi:10.1007/s10854-008-9717-y

    Article  CAS  Google Scholar 

  13. C.J.D. Kumar, T.K. Sowmya, E.K. Sunny, Influence of nature of filler on densification of anorthite-based crystallizable glass + ceramic system for low temperature cofired ceramics application. J. Am. Ceram. Soc. 92(3), 595–600 (2009). doi:10.1111/j.1551-2916.2008.02912.x

    Article  CAS  Google Scholar 

  14. S. Rada, M. Culea, E. Culea, Structure of TeO2 B2O3 glasses inferred from infrared spectroscopy and DFT calculations. J. Non-Cryst. Solids 354(52–54), 5491–5495 (2008). doi:10.1016/j.jnoncrysol.2008.09.009

    Article  CAS  Google Scholar 

  15. K. El-Egili, Infrared studies of Na2O–B2O3–SiO2 and Al2O3–Na2O–B2O3–SiO2 glasses. Physical B 325, 340–348 (2003). doi:10.1016/S0921-4526(02)01547-8

    Article  CAS  Google Scholar 

  16. S. Rada, V. Dan, M. Rada et al., Gadolinium-environment in borate-tellurate glass ceramics studied by FTIR and EPR spectroscopy. J. Non-Cryst. Solids 356, 474–479 (2010). doi:10.1016/j.jnoncrysol.2009.12.011

    Article  CAS  Google Scholar 

  17. Z.D. Guan, Z.T. Zhang, J.S. Jiao, Physical properties of inorganic dielectric materials (Tsinghua University Press, Beijing, 2004), pp. 315–316

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqing Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Zhou, H., Zhu, H. et al. Microstructure and dielectric properties of glass/Al2O3 composites with various low softening point borosilicate glasses. J Mater Sci: Mater Electron 23, 2130–2139 (2012). https://doi.org/10.1007/s10854-012-0719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0719-4

Keywords

Navigation